Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,80 +1,80 @@
|
|
1 |
-
# app.py
|
2 |
-
|
3 |
-
import streamlit as st
|
4 |
-
import torch
|
5 |
-
import torch.nn as nn
|
6 |
-
from transformers import
|
7 |
-
|
8 |
-
# β
Device
|
9 |
-
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
10 |
-
|
11 |
-
# β
Load Tokenizer
|
12 |
-
tokenizer =
|
13 |
-
|
14 |
-
# β
Define Model
|
15 |
-
class ScoringModel(nn.Module):
|
16 |
-
def __init__(self,
|
17 |
-
super().__init__()
|
18 |
-
self.base = AutoModel.from_pretrained(
|
19 |
-
self.base.gradient_checkpointing_enable()
|
20 |
-
self.dropout1 = nn.Dropout(dropout_rate)
|
21 |
-
self.dropout2 = nn.Dropout(dropout_rate)
|
22 |
-
self.dropout3 = nn.Dropout(dropout_rate)
|
23 |
-
self.classifier = nn.Linear(self.base.config.hidden_size, 1)
|
24 |
-
|
25 |
-
def forward(self, input_ids, attention_mask):
|
26 |
-
hidden = self.base(input_ids=input_ids, attention_mask=attention_mask).last_hidden_state[:, 0]
|
27 |
-
logits = (self.classifier(self.dropout1(hidden)) +
|
28 |
-
self.classifier(self.dropout2(hidden)) +
|
29 |
-
self.classifier(self.dropout3(hidden))) / 3
|
30 |
-
return logits
|
31 |
-
|
32 |
-
# β
Instantiate and Load
|
33 |
-
model = ScoringModel()
|
34 |
-
model.load_state_dict(torch.load("
|
35 |
-
model.to(device)
|
36 |
-
model.eval()
|
37 |
-
|
38 |
-
# β
Prediction function
|
39 |
-
def predict(prompt, response_a, response_b):
|
40 |
-
model.eval()
|
41 |
-
with torch.no_grad():
|
42 |
-
text_a = f"Prompt: {prompt} [SEP] {response_a}"
|
43 |
-
text_b = f"Prompt: {prompt} [SEP] {response_b}"
|
44 |
-
|
45 |
-
encoded_a = tokenizer(text_a, return_tensors='pt', padding="max_length", truncation=True, max_length=186)
|
46 |
-
encoded_b = tokenizer(text_b, return_tensors='pt', padding="max_length", truncation=True, max_length=186)
|
47 |
-
|
48 |
-
inputs_a = {k: v.to(device) for k, v in encoded_a.items()}
|
49 |
-
inputs_b = {k: v.to(device) for k, v in encoded_b.items()}
|
50 |
-
|
51 |
-
score_a = model(**inputs_a).squeeze()
|
52 |
-
score_b = model(**inputs_b).squeeze()
|
53 |
-
|
54 |
-
prob_a = torch.sigmoid(score_a).item()
|
55 |
-
prob_b = torch.sigmoid(score_b).item()
|
56 |
-
|
57 |
-
return prob_a, prob_b
|
58 |
-
|
59 |
-
# β
Streamlit App
|
60 |
-
st.title("π Fine-Tuned DeBERTa-v3-small: Response Quality Evaluator")
|
61 |
-
|
62 |
-
prompt = st.text_area("Enter your prompt:", height=100)
|
63 |
-
response_a = st.text_area("Enter Response A:", height=100)
|
64 |
-
response_b = st.text_area("Enter Response B:", height=100)
|
65 |
-
|
66 |
-
if st.button("Predict Better Response"):
|
67 |
-
if prompt and response_a and response_b:
|
68 |
-
prob_a, prob_b = predict(prompt, response_a, response_b)
|
69 |
-
|
70 |
-
st.write(f"π΅ **Response A Probability:** {prob_a:.4f}")
|
71 |
-
st.write(f"π **Response B Probability:** {prob_b:.4f}")
|
72 |
-
|
73 |
-
if prob_b > prob_a:
|
74 |
-
st.success("β
Model predicts: **Response B** is better!")
|
75 |
-
else:
|
76 |
-
st.success("β
Model predicts: **Response A** is better!")
|
77 |
-
else:
|
78 |
-
st.warning("β οΈ Please fill in all fields before predicting.")
|
79 |
-
|
80 |
-
|
|
|
1 |
+
# app.py
|
2 |
+
|
3 |
+
import streamlit as st
|
4 |
+
import torch
|
5 |
+
import torch.nn as nn
|
6 |
+
from transformers import AutoModel, PreTrainedTokenizerFast
|
7 |
+
|
8 |
+
# β
Device
|
9 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
10 |
+
|
11 |
+
# β
Load Tokenizer
|
12 |
+
tokenizer = PreTrainedTokenizerFast(tokenizer_file="final_deberta_model/tokenizer.json")
|
13 |
+
|
14 |
+
# β
Define Model
|
15 |
+
class ScoringModel(nn.Module):
|
16 |
+
def __init__(self, base_model_name="microsoft/deberta-v3-small", dropout_rate=0.242):
|
17 |
+
super().__init__()
|
18 |
+
self.base = AutoModel.from_pretrained(base_model_name)
|
19 |
+
self.base.gradient_checkpointing_enable()
|
20 |
+
self.dropout1 = nn.Dropout(dropout_rate)
|
21 |
+
self.dropout2 = nn.Dropout(dropout_rate)
|
22 |
+
self.dropout3 = nn.Dropout(dropout_rate)
|
23 |
+
self.classifier = nn.Linear(self.base.config.hidden_size, 1)
|
24 |
+
|
25 |
+
def forward(self, input_ids, attention_mask):
|
26 |
+
hidden = self.base(input_ids=input_ids, attention_mask=attention_mask).last_hidden_state[:, 0]
|
27 |
+
logits = (self.classifier(self.dropout1(hidden)) +
|
28 |
+
self.classifier(self.dropout2(hidden)) +
|
29 |
+
self.classifier(self.dropout3(hidden))) / 3
|
30 |
+
return logits
|
31 |
+
|
32 |
+
# β
Instantiate and Load
|
33 |
+
model = ScoringModel()
|
34 |
+
model.load_state_dict(torch.load("final_deberta_model/scoring_model.pt", map_location=device))
|
35 |
+
model.to(device)
|
36 |
+
model.eval()
|
37 |
+
|
38 |
+
# β
Prediction function
|
39 |
+
def predict(prompt, response_a, response_b):
|
40 |
+
model.eval()
|
41 |
+
with torch.no_grad():
|
42 |
+
text_a = f"Prompt: {prompt} [SEP] {response_a}"
|
43 |
+
text_b = f"Prompt: {prompt} [SEP] {response_b}"
|
44 |
+
|
45 |
+
encoded_a = tokenizer(text_a, return_tensors='pt', padding="max_length", truncation=True, max_length=186)
|
46 |
+
encoded_b = tokenizer(text_b, return_tensors='pt', padding="max_length", truncation=True, max_length=186)
|
47 |
+
|
48 |
+
inputs_a = {k: v.to(device) for k, v in encoded_a.items()}
|
49 |
+
inputs_b = {k: v.to(device) for k, v in encoded_b.items()}
|
50 |
+
|
51 |
+
score_a = model(**inputs_a).squeeze()
|
52 |
+
score_b = model(**inputs_b).squeeze()
|
53 |
+
|
54 |
+
prob_a = torch.sigmoid(score_a).item()
|
55 |
+
prob_b = torch.sigmoid(score_b).item()
|
56 |
+
|
57 |
+
return prob_a, prob_b
|
58 |
+
|
59 |
+
# β
Streamlit App
|
60 |
+
st.title("π Fine-Tuned DeBERTa-v3-small: Response Quality Evaluator")
|
61 |
+
|
62 |
+
prompt = st.text_area("Enter your prompt:", height=100)
|
63 |
+
response_a = st.text_area("Enter Response A:", height=100)
|
64 |
+
response_b = st.text_area("Enter Response B:", height=100)
|
65 |
+
|
66 |
+
if st.button("Predict Better Response"):
|
67 |
+
if prompt and response_a and response_b:
|
68 |
+
prob_a, prob_b = predict(prompt, response_a, response_b)
|
69 |
+
|
70 |
+
st.write(f"π΅ **Response A Probability:** {prob_a:.4f}")
|
71 |
+
st.write(f"π **Response B Probability:** {prob_b:.4f}")
|
72 |
+
|
73 |
+
if prob_b > prob_a:
|
74 |
+
st.success("β
Model predicts: **Response B** is better!")
|
75 |
+
else:
|
76 |
+
st.success("β
Model predicts: **Response A** is better!")
|
77 |
+
else:
|
78 |
+
st.warning("β οΈ Please fill in all fields before predicting.")
|
79 |
+
|
80 |
+
|