|
import streamlit as st |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
import torch |
|
import os |
|
|
|
|
|
os.environ["TRANSFORMERS_CACHE"] = "./hf_cache" |
|
|
|
|
|
st.title("π€ Chatbot DeepSeek con Transformers + Streamlit") |
|
|
|
|
|
@st.cache_resource |
|
def load_model(): |
|
model_name = "deepseek-ai/DeepSeek-Coder-V2-Lite-Instruct" |
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16, device_map="auto") |
|
return tokenizer, model |
|
|
|
tokenizer, model = load_model() |
|
|
|
|
|
if "chat_history" not in st.session_state: |
|
st.session_state.chat_history = [] |
|
|
|
|
|
user_input = st.text_input("Scrivi il tuo messaggio:") |
|
|
|
|
|
if user_input: |
|
st.session_state.chat_history.append(("π§", user_input)) |
|
|
|
inputs = tokenizer(user_input, return_tensors="pt").to(model.device) |
|
outputs = model.generate(**inputs, max_new_tokens=256, do_sample=True, temperature=0.7) |
|
response = tokenizer.decode(outputs[0], skip_special_tokens=True) |
|
|
|
st.session_state.chat_history.append(("π€", response)) |
|
|
|
|
|
for speaker, msg in st.session_state.chat_history: |
|
st.markdown(f"**{speaker}**: {msg}") |
|
|