multimodalart HF Staff commited on
Commit
6fca586
·
verified ·
1 Parent(s): 7d29235

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +3 -0
app.py CHANGED
@@ -6,6 +6,7 @@ import torch
6
  from diffusers import DiffusionPipeline, FlowMatchEulerDiscreteScheduler, AutoencoderTiny, AutoencoderKL
7
  from transformers import CLIPTextModel, CLIPTokenizer,T5EncoderModel, T5TokenizerFast
8
  from live_preview_helpers import calculate_shift, retrieve_timesteps, flux_pipe_call_that_returns_an_iterable_of_images
 
9
 
10
  dtype = torch.bfloat16
11
  device = "cuda" if torch.cuda.is_available() else "cpu"
@@ -13,6 +14,8 @@ device = "cuda" if torch.cuda.is_available() else "cpu"
13
  taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype).to(device)
14
  good_vae = AutoencoderKL.from_pretrained("black-forest-labs/FLUX.1-dev", subfolder="vae", torch_dtype=dtype).to(device)
15
  pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=dtype, vae=taef1).to(device)
 
 
16
  torch.cuda.empty_cache()
17
 
18
  MAX_SEED = np.iinfo(np.int32).max
 
6
  from diffusers import DiffusionPipeline, FlowMatchEulerDiscreteScheduler, AutoencoderTiny, AutoencoderKL
7
  from transformers import CLIPTextModel, CLIPTokenizer,T5EncoderModel, T5TokenizerFast
8
  from live_preview_helpers import calculate_shift, retrieve_timesteps, flux_pipe_call_that_returns_an_iterable_of_images
9
+ from torchao.quantization.quant_api import Int8WeightOnlyConfig, quantize_
10
 
11
  dtype = torch.bfloat16
12
  device = "cuda" if torch.cuda.is_available() else "cpu"
 
14
  taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype).to(device)
15
  good_vae = AutoencoderKL.from_pretrained("black-forest-labs/FLUX.1-dev", subfolder="vae", torch_dtype=dtype).to(device)
16
  pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=dtype, vae=taef1).to(device)
17
+ quantize_(pipe.transformer, Int8WeightOnlyConfig())
18
+
19
  torch.cuda.empty_cache()
20
 
21
  MAX_SEED = np.iinfo(np.int32).max