import gradio as gr import numpy as np import random import torch import spaces from PIL import Image from diffusers import FlowMatchEulerDiscreteScheduler from optimization import optimize_pipeline_ from qwenimage.pipeline_qwenimage_edit_plus import QwenImageEditPlusPipeline from qwenimage.transformer_qwenimage import QwenImageTransformer2DModel from qwenimage.qwen_fa3_processor import QwenDoubleStreamAttnProcessorFA3 import math # --- Model Loading --- dtype = torch.bfloat16 device = "cuda" if torch.cuda.is_available() else "cpu" scheduler_config = { "base_image_seq_len": 256, "base_shift": math.log(3), "invert_sigmas": False, "max_image_seq_len": 8192, "max_shift": math.log(3), "num_train_timesteps": 1000, "shift": 1.0, "shift_terminal": None, "stochastic_sampling": False, "time_shift_type": "exponential", "use_beta_sigmas": False, "use_dynamic_shifting": True, "use_exponential_sigmas": False, "use_karras_sigmas": False, } scheduler = FlowMatchEulerDiscreteScheduler.from_config(scheduler_config) pipe = QwenImageEditPlusPipeline.from_pretrained("Qwen/Qwen-Image-Edit-2509", scheduler=scheduler, torch_dtype=dtype) # Load the texture LoRA pipe.load_lora_weights("tarn59/apply_texture_qwen_image_edit_2509", weight_name="apply_texture_v2_qwen_image_edit_2509.safetensors", adapter_name="texture") pipe.load_lora_weights("lightx2v/Qwen-Image-Lightning", weight_name="Qwen-Image-Lightning-4steps-V2.0-bf16.safetensors", adapter_name="lightning") pipe.set_adapters(["texture", "lightning"], adapter_weights=[1., 1.]) pipe.fuse_lora(adapter_names=["texture", "lightning"], lora_scale=1) pipe.unload_lora_weights() pipe.transformer.__class__ = QwenImageTransformer2DModel pipe.transformer.set_attn_processor(QwenDoubleStreamAttnProcessorFA3()) pipe.to(device) optimize_pipeline_(pipe, image=[Image.new("RGB", (1024, 1024)), Image.new("RGB", (1024, 1024))], prompt="prompt") MAX_SEED = np.iinfo(np.int32).max def calculate_dimensions(image): """Calculate output dimensions based on content image, keeping largest side at 1024.""" if image is None: return 1024, 1024 original_width, original_height = image.size if original_width > original_height: new_width = 1024 aspect_ratio = original_height / original_width new_height = int(new_width * aspect_ratio) else: new_height = 1024 aspect_ratio = original_width / original_height new_width = int(new_height * aspect_ratio) # Ensure dimensions are multiples of 8 new_width = (new_width // 8) * 8 new_height = (new_height // 8) * 8 return new_width, new_height @spaces.GPU def apply_texture( content_image, texture_image, prompt, seed=42, randomize_seed=False, true_guidance_scale=False, num_inference_steps=4, progress=gr.Progress(track_tqdm=True) ): if content_image is None: raise gr.Error("Please upload a content image.") if texture_image is None: raise gr.Error("Please upload a texture image.") if not prompt or not prompt.strip(): raise gr.Error("Please provide a description.") if randomize_seed: seed = random.randint(0, MAX_SEED) generator = torch.Generator(device=device).manual_seed(seed) # Calculate dimensions based on content image width, height = calculate_dimensions(content_image) # Prepare images content_pil = content_image.convert("RGB") if isinstance(content_image, Image.Image) else Image.open(content_image.name).convert("RGB") texture_pil = texture_image.convert("RGB") if isinstance(texture_image, Image.Image) else Image.open(texture_image.name).convert("RGB") pil_images = [content_pil, texture_pil] result = pipe( image=pil_images, prompt=prompt, height=height, width=width, num_inference_steps=num_inference_steps, generator=generator, true_cfg_scale=true_guidance_scale, num_images_per_prompt=1, ).images[0] return result, seed # --- UI --- css = ''' #col-container, #examples { max-width: 1200px; margin: 0 auto; } .dark .progress-text{color: white !important} ''' with gr.Blocks(theme=gr.themes.Citrus(), css=css) as demo: with gr.Column(elem_id="col-container"): gr.Markdown("# Apply Texture — Qwen Image Edit") gr.Markdown(""" Using [tarn59's Apply-Texture-Qwen-Image-Edit-2509 LoRA](https://huggingface.co/tarn59/apply_texture_qwen_image_edit_2509) and [lightx2v/Qwen-Image-Lightning](https://huggingface.co/lightx2v/Qwen-Image-Lightning) for 4-step inference 💨 """) with gr.Row(): with gr.Column(): with gr.Row(): content_image = gr.Image(label="Content", type="pil") texture_image = gr.Image(label="Texture", type="pil") prompt = gr.Textbox( label="Describe", info="Apply ... texture to ...", placeholder="Apply wood siding texture to building walls." ) button = gr.Button("✨ Generate", variant="primary") with gr.Accordion("⚙️ Advanced Settings", open=False): seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0) randomize_seed = gr.Checkbox(label="Randomize Seed", value=True) true_guidance_scale = gr.Slider( label="True Guidance Scale", minimum=1.0, maximum=10.0, step=0.1, value=1.0 ) num_inference_steps = gr.Slider( label="Inference Steps", minimum=1, maximum=40, step=1, value=4 ) with gr.Column(): output = gr.Image(label="Output", interactive=False) # Event handlers button.click( fn=apply_texture, inputs=[ content_image, texture_image, prompt, seed, randomize_seed, true_guidance_scale, num_inference_steps ], outputs=[output, seed] ) # Examples gr.Examples( examples=[ ["coffee_mug.png", "wood_boxes.png", "Apply wood texture to mug"], ["720park.jpg", "black-and-white.jpg", "Apply black-and-white wobbly texture to building"], ], inputs=[ content_image, texture_image, prompt, ], outputs=[output, seed], fn=apply_texture, cache_examples="lazy", elem_id="examples" ) if __name__ == "__main__": demo.launch()