Spaces:
Running
Running
import streamlit as st | |
from transformers import ( | |
MarianMTModel, MarianTokenizer, | |
GPT2LMHeadModel, GPT2Tokenizer, | |
pipeline | |
) | |
st.title("Multi Chatbot") | |
models = { | |
"English to French": { | |
"name": "Helsinki-NLP/opus-mt-en-fr", | |
"description": "Translate English text to French." | |
}, | |
"Sentiment Analysis": { | |
"name": "distilbert-base-uncased-finetuned-sst-2-english", | |
"description": "Analyze the sentiment of input text." | |
}, | |
"Story Generator": { | |
"name": "distilgpt2", | |
"description": "Generate creative stories based on input." | |
} | |
} | |
st.sidebar.header("Choose a Model") | |
selected_model_key = st.sidebar.radio("Select a Model:", list(models.keys())) | |
model_name = models[selected_model_key]["name"] | |
model_description = models[selected_model_key]["description"] | |
st.sidebar.markdown(f"### Model Description\n{model_description}") | |
try: | |
if selected_model_key == "English to French": | |
st.write("Loading English to French model...") | |
tokenizer = MarianTokenizer.from_pretrained(model_name) | |
model = MarianMTModel.from_pretrained(model_name) | |
st.write("English to French model loaded successfully.") | |
elif selected_model_key == "Sentiment Analysis": | |
st.write("Loading Sentiment Analysis model...") | |
sentiment_analyzer = pipeline("sentiment-analysis", model=model_name) | |
st.write("Sentiment Analysis model loaded successfully.") | |
elif selected_model_key == "Story Generator": | |
st.write("Loading Story Generator model...") | |
tokenizer = GPT2Tokenizer.from_pretrained("distilgpt2") | |
model = GPT2LMHeadModel.from_pretrained("distilgpt2") | |
tokenizer.pad_token = tokenizer.eos_token | |
st.write("Story Generator model loaded successfully.") | |
except Exception as e: | |
st.error(f"Failed to load the model: {e}") | |
user_input = st.text_input("Enter your query:") | |
if user_input: | |
if selected_model_key == "English to French": | |
try: | |
inputs = tokenizer(user_input, return_tensors="pt", truncation=True, padding=True) | |
outputs = model.generate(inputs["input_ids"], max_length=150, num_return_sequences=1, no_repeat_ngram_size=2) | |
bot_response = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
st.write(f"Translated Text: {bot_response}") | |
except Exception as e: | |
st.error(f"Error during translation: {e}") | |
elif selected_model_key == "Sentiment Analysis": | |
try: | |
result = sentiment_analyzer(user_input)[0] | |
st.write(f"Sentiment: {result['label']}") | |
st.write(f"Confidence: {result['score']:.2f}") | |
except Exception as e: | |
st.error(f"Error during sentiment analysis: {e}") | |
elif selected_model_key == "Story Generator": | |
try: | |
inputs = tokenizer(user_input, return_tensors="pt", truncation=True, padding=True) | |
outputs = model.generate(inputs["input_ids"], max_length=500, num_return_sequences=1, no_repeat_ngram_size=2, temperature=0.7) | |
bot_response = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
st.write(f"Generated Story: {bot_response}") | |
except Exception as e: | |
st.error(f"Error during story generation: {e}") | |