File size: 2,783 Bytes
384fb7f
 
 
 
 
 
 
f31b870
 
384fb7f
f31b870
 
 
 
384fb7f
 
 
f31b870
384fb7f
f31b870
384fb7f
 
 
 
 
 
 
 
f31b870
384fb7f
 
f31b870
384fb7f
 
 
 
 
 
 
 
f31b870
 
 
 
 
 
 
 
 
384fb7f
 
 
 
 
 
 
 
f31b870
384fb7f
 
 
 
 
 
 
 
 
 
 
f31b870
384fb7f
 
 
 
f31b870
384fb7f
 
 
 
 
f31b870
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
import gradio as gr
from loadimg import load_img
import spaces
from transformers import AutoModelForImageSegmentation
import torch
from torchvision import transforms

# Set float32 matmul precision (used for performance tuning)
torch.set_float32_matmul_precision("high")

# Detect device (GPU if available, otherwise CPU)
device = "cuda" if torch.cuda.is_available() else "cpu"

# Load model and send to appropriate device
birefnet = AutoModelForImageSegmentation.from_pretrained(
    "ZhengPeng7/BiRefNet", trust_remote_code=True
)
birefnet.to(device)

# Image transformation pipeline
transform_image = transforms.Compose(
    [
        transforms.Resize((1024, 1024)),
        transforms.ToTensor(),
        transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
    ]
)

# Background removal pipeline
def process(image):
    image_size = image.size
    input_images = transform_image(image).unsqueeze(0).to(device)
    with torch.no_grad():
        preds = birefnet(input_images)[-1].sigmoid().cpu()
    pred = preds[0].squeeze()
    pred_pil = transforms.ToPILImage()(pred)
    mask = pred_pil.resize(image_size)
    image.putalpha(mask)
    return image

# Gradio interface function
def fn(image):
    im = load_img(image, output_type="pil")
    im = im.convert("RGB")
    origin = im.copy()
    processed_image = process(im)
    return (processed_image, origin)

# Process uploaded file and return PNG with alpha channel
def process_file(f):
    name_path = f.rsplit(".", 1)[0] + ".png"
    im = load_img(f, output_type="pil")
    im = im.convert("RGB")
    transparent = process(im)
    transparent.save(name_path)
    return name_path

# Gradio components
slider1 = gr.ImageSlider(label="Processed Image", type="pil", format="png")
slider2 = gr.ImageSlider(label="Processed Image from URL", type="pil", format="png")
image_upload = gr.Image(label="Upload an image")
image_file_upload = gr.Image(label="Upload an image", type="filepath")
url_input = gr.Textbox(label="Paste an image URL")
output_file = gr.File(label="Output PNG File")

# Example images
chameleon = load_img("butterfly.jpg", output_type="pil")
url_example = "https://hips.hearstapps.com/hmg-prod/images/gettyimages-1229892983-square.jpg"

# Gradio interface tabs
tab1 = gr.Interface(fn, inputs=image_upload, outputs=slider1, examples=[chameleon], api_name="image")
tab2 = gr.Interface(fn, inputs=url_input, outputs=slider2, examples=[url_example], api_name="text")
tab3 = gr.Interface(process_file, inputs=image_file_upload, outputs=output_file, examples=["butterfly.jpg"], api_name="png")

# Launch app
demo = gr.TabbedInterface(
    [tab1, tab2, tab3], ["Image Upload", "URL Input", "File Output"], title="Background Removal Tool"
)

if __name__ == "__main__":
    demo.launch(show_error=True)