Spaces:
Sleeping
Sleeping
import asyncio | |
from concurrent.futures import ThreadPoolExecutor | |
import numpy as np | |
def stats_metrics(data, column, usl, lsl): | |
rolling_mean = data[column].expanding().mean() | |
rolling_std = data[column].expanding().std() | |
cp = (usl - lsl) / (6 * rolling_std) | |
cpk = np.minimum( | |
(usl - rolling_mean) / (3 * rolling_std), | |
(rolling_mean - lsl) / (3 * rolling_std) | |
) | |
cpk[rolling_std == 0] = 0 | |
return rolling_mean, rolling_std, cp, cpk | |
def process_unique_tool(tool, tool_data): | |
tool_data['pos_rolling_mean'], tool_data['pos_rolling_std'], tool_data['pos_rolling_cp'], tool_data['pos_rolling_cpk'] = stats_metrics(tool_data, 'Position', 0.5, 0.3) | |
tool_data['ori_rolling_mean'], tool_data['ori_rolling_std'], tool_data['ori_rolling_cp'], tool_data['ori_rolling_cpk'] = stats_metrics(tool_data, 'Orientation', 0.6, 0.2) | |
return tool, tool_data | |
async def tools_metrics(raw_data): | |
filtered_data = raw_data[raw_data['Tool ID'] != 'N/A'] | |
tools = filtered_data['Tool ID'].unique() | |
loop = asyncio.get_running_loop() | |
metrics = {} | |
with ThreadPoolExecutor() as executor: | |
tasks = [ | |
loop.run_in_executor( | |
executor, | |
process_unique_tool, | |
tool, | |
filtered_data[filtered_data['Tool ID'] == tool].copy() | |
) | |
for tool in tools | |
] | |
results = await asyncio.gather(*tasks) | |
for tool, tool_data in results: | |
metrics[f"tool_{tool}"] = tool_data | |
all_tools_data = filtered_data.copy() | |
all_tools_data['pos_rolling_mean'], all_tools_data['pos_rolling_std'], all_tools_data['pos_rolling_cp'], all_tools_data['pos_rolling_cpk'] = stats_metrics(all_tools_data, 'Position', 0.5, 0.3) | |
all_tools_data['ori_rolling_mean'], all_tools_data['ori_rolling_std'], all_tools_data['ori_rolling_cp'], all_tools_data['ori_rolling_cpk'] = stats_metrics(all_tools_data, 'Orientation', 0.6, 0.2) | |
metrics['all'] = all_tools_data | |
return metrics |