Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -1,291 +1,90 @@
|
|
1 |
-
import os
|
2 |
-
import sys
|
3 |
-
import torch
|
4 |
-
import torchaudio
|
5 |
-
import tempfile
|
6 |
-
import json
|
7 |
-
import gradio as gr
|
8 |
-
from omegaconf import OmegaConf
|
9 |
-
from huggingface_hub import hf_hub_download
|
10 |
import spaces
|
|
|
|
|
|
|
11 |
|
12 |
-
#
|
13 |
-
|
14 |
-
|
15 |
-
os.environ['DISABLE_FLASH_ATTN'] = "1"
|
16 |
-
from SongBloom.models.songbloom.songbloom_pl import SongBloom_Sampler
|
17 |
-
|
18 |
-
|
19 |
-
class SongBloomApp:
|
20 |
-
def __init__(self):
|
21 |
-
self.model = None
|
22 |
-
self.is_loading = False
|
23 |
-
|
24 |
-
def hf_download(self, repo_id="CypressYang/SongBloom", model_name="songbloom_full_150s", local_dir="./cache"):
|
25 |
-
"""Download model files from Hugging Face"""
|
26 |
-
cfg_path = hf_hub_download(
|
27 |
-
repo_id=repo_id, filename=f"{model_name}.yaml", local_dir=local_dir)
|
28 |
-
ckpt_path = hf_hub_download(
|
29 |
-
repo_id=repo_id, filename=f"{model_name}.pt", local_dir=local_dir)
|
30 |
-
|
31 |
-
vae_cfg_path = hf_hub_download(
|
32 |
-
repo_id=repo_id, filename="stable_audio_1920_vae.json", local_dir=local_dir)
|
33 |
-
vae_ckpt_path = hf_hub_download(
|
34 |
-
repo_id=repo_id, filename="autoencoder_music_dsp1920.ckpt", local_dir=local_dir)
|
35 |
-
|
36 |
-
g2p_path = hf_hub_download(
|
37 |
-
repo_id=repo_id, filename="vocab_g2p.yaml", local_dir=local_dir)
|
38 |
-
|
39 |
-
return cfg_path
|
40 |
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
OmegaConf.register_new_resolver("load_yaml", lambda x: OmegaConf.load(x))
|
47 |
-
OmegaConf.register_new_resolver("dynamic_path", lambda x: x.replace("???", parent_dir))
|
48 |
-
|
49 |
-
file_cfg = OmegaConf.load(open(cfg_file, 'r')) if cfg_file is not None else OmegaConf.create()
|
50 |
-
return file_cfg
|
51 |
|
52 |
-
|
53 |
-
"""Load the SongBloom model"""
|
54 |
-
if self.is_loading:
|
55 |
-
return "Model is already loading, please wait..."
|
56 |
-
|
57 |
-
if self.model is not None:
|
58 |
-
return "Model is already loaded!"
|
59 |
-
|
60 |
-
try:
|
61 |
-
self.is_loading = True
|
62 |
-
local_dir = "./cache"
|
63 |
-
|
64 |
-
# Download model files
|
65 |
-
cfg_path = self.hf_download(repo_id, model_name, local_dir)
|
66 |
-
cfg = self.load_config(f"{local_dir}/{model_name}.yaml", parent_dir=local_dir)
|
67 |
-
|
68 |
-
# Load model
|
69 |
-
dtype_torch = torch.float32 if dtype == 'float32' else torch.bfloat16
|
70 |
-
self.model = SongBloom_Sampler.build_from_trainer(cfg, strict=True, dtype=dtype_torch)
|
71 |
-
self.model.set_generation_params(**cfg.inference)
|
72 |
-
|
73 |
-
self.is_loading = False
|
74 |
-
return "Model loaded successfully!"
|
75 |
-
|
76 |
-
except Exception as e:
|
77 |
-
self.is_loading = False
|
78 |
-
return f"Error loading model: {str(e)}"
|
79 |
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
85 |
|
86 |
-
|
87 |
-
|
|
|
|
|
|
|
88 |
|
89 |
-
|
90 |
-
|
|
|
|
|
|
|
|
|
91 |
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
# Load and process the prompt audio
|
96 |
-
prompt_wav, sr = torchaudio.load(prompt_audio)
|
97 |
-
if sr != self.model.sample_rate:
|
98 |
-
prompt_wav = torchaudio.functional.resample(prompt_wav, sr, self.model.sample_rate)
|
99 |
-
|
100 |
-
# Convert to mono and limit to 10 seconds
|
101 |
-
dtype_torch = torch.float32 if dtype == 'float32' else torch.bfloat16
|
102 |
-
prompt_wav = prompt_wav.mean(dim=0, keepdim=True).to(dtype_torch)
|
103 |
-
prompt_wav = prompt_wav[..., :10*self.model.sample_rate]
|
104 |
-
|
105 |
-
progress(0.3, desc="Generating song...")
|
106 |
-
|
107 |
-
output_files = []
|
108 |
-
|
109 |
-
# Generate samples
|
110 |
-
for i in range(n_samples):
|
111 |
-
progress(0.3 + (i / n_samples) * 0.6, desc=f"Generating sample {i+1}/{n_samples}...")
|
112 |
-
|
113 |
-
wav = self.model.generate(lyrics, prompt_wav)
|
114 |
-
|
115 |
-
# Save to temporary file
|
116 |
-
with tempfile.NamedTemporaryFile(suffix='.flac', delete=False) as tmp_file:
|
117 |
-
torchaudio.save(tmp_file.name, wav[0].cpu().float(), self.model.sample_rate)
|
118 |
-
output_files.append(tmp_file.name)
|
119 |
-
|
120 |
-
progress(1.0, desc="Complete!")
|
121 |
-
return output_files, f"Successfully generated {n_samples} song(s)!"
|
122 |
-
|
123 |
-
except Exception as e:
|
124 |
-
return [], f"Error generating song: {str(e)}"
|
125 |
-
|
126 |
-
def format_lyrics_example(self, example_type):
|
127 |
-
"""Provide example lyrics in the correct format"""
|
128 |
-
if example_type == "Chinese":
|
129 |
-
return "[intro] [intro] [intro] [intro] [intro] [intro] [intro] [intro] [intro] [intro] , [verse] 风轻轻吹过古道.岁月在墙上刻下记号.梦中你笑得多甜.醒来却只剩下寂寥.繁花似锦的春天.少了你的色彩也失了妖娆 , [chorus] 想见你.在晨曦中.在月光下.每个瞬间都渴望.没有你.星辰也黯淡.花香也无味.只剩下思念的煎熬.想见你.穿越千山万水.只为那一瞥.你的容颜 , [inst] [inst] [inst] [inst] [inst] [inst] [inst] [inst] [inst] [inst] , [verse] 月儿弯弯照九州.你是否也在仰望同一片天空.灯火阑珊处.我寻觅你的影踪.回忆如波光粼粼.荡漾在心湖的每个角落 , [chorus] 想见你.在晨曦中.在月光下.每个瞬间都渴望.没有你.星辰也黯淡.花香也无味.只剩下思念的煎熬.想见你.穿越千山万水.只为那一瞥.你的容颜 , [outro] [outro] [outro] [outro] [outro] [outro] [outro] [outro] [outro] [outro]"
|
130 |
-
else: # English
|
131 |
-
return "[intro] [intro] [intro] [intro] [intro] [intro] [intro] [intro] [intro] [intro] , [verse] City lights flicker through the car window. Dreams pass fast where the lost ones go. Neon signs echo stories untold. I chase shadows while the night grows cold , [chorus] Run with me down the empty street. Where silence and heartbeat always meet. Every breath. a whispered vow. We are forever. here and now , [inst] [inst] [inst] [inst] [inst] [inst] [inst] [inst] [inst] [inst] [inst] [inst] , [verse] Footsteps loud in the tunnel of time. Regret and hope in a crooked rhyme. You held my hand when I slipped through the dark. Lit a match and you became my spark , [bridge] We were nothing and everything too. Lost in a moment. found in the view. Of all we broke and still survived. Somehow the flame stayed alive , [chorus] Run with me down the empty street. Where silence and heartbeat always meet. Every breath. a whispered vow. We are forever. here and now , [outro] [outro] [outro] [outro] [outro] [outro] [outro] [outro] [outro] [outro] [outro]"
|
132 |
-
|
133 |
-
|
134 |
-
# Initialize the app
|
135 |
-
app = SongBloomApp()
|
136 |
|
137 |
# Create Gradio interface
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
model_status = gr.Textbox(
|
157 |
-
label="Model Status",
|
158 |
-
value="Model not loaded",
|
159 |
-
interactive=False
|
160 |
-
)
|
161 |
-
|
162 |
-
with gr.Row():
|
163 |
-
repo_id = gr.Textbox(
|
164 |
-
label="Repository ID",
|
165 |
-
value="CypressYang/SongBloom",
|
166 |
-
interactive=True
|
167 |
-
)
|
168 |
-
model_name = gr.Textbox(
|
169 |
-
label="Model Name",
|
170 |
-
value="songbloom_full_150s",
|
171 |
-
interactive=True
|
172 |
-
)
|
173 |
-
|
174 |
-
dtype_choice = gr.Dropdown(
|
175 |
-
choices=["float32", "bfloat16"],
|
176 |
-
value="float32",
|
177 |
-
label="Precision (use bfloat16 for lower VRAM)",
|
178 |
-
interactive=True
|
179 |
-
)
|
180 |
-
|
181 |
-
load_btn = gr.Button("Load Model", variant="primary")
|
182 |
-
|
183 |
-
# Lyrics Input Section
|
184 |
-
gr.Markdown("## 📝 Lyrics Input")
|
185 |
-
|
186 |
-
# Example selector
|
187 |
-
example_type = gr.Dropdown(
|
188 |
-
choices=["Chinese", "English"],
|
189 |
-
value="Chinese",
|
190 |
-
label="Load Example Lyrics",
|
191 |
-
interactive=True
|
192 |
-
)
|
193 |
-
|
194 |
-
lyrics_input = gr.Textbox(
|
195 |
-
label="Lyrics",
|
196 |
-
placeholder="Enter your lyrics in the specified format...",
|
197 |
-
lines=8,
|
198 |
-
max_lines=15
|
199 |
-
)
|
200 |
-
|
201 |
-
load_example_btn = gr.Button("Load Example", variant="secondary")
|
202 |
-
|
203 |
-
# Audio Upload Section
|
204 |
-
gr.Markdown("## 🎧 Audio Prompt")
|
205 |
-
audio_input = gr.Audio(
|
206 |
-
label="Upload Audio Prompt (10-second WAV file recommended)",
|
207 |
-
type="filepath"
|
208 |
-
)
|
209 |
-
|
210 |
-
# Generation Settings
|
211 |
-
gr.Markdown("## ⚙️ Generation Settings")
|
212 |
-
n_samples = gr.Slider(
|
213 |
-
minimum=1,
|
214 |
-
maximum=5,
|
215 |
-
value=2,
|
216 |
-
step=1,
|
217 |
-
label="Number of samples to generate"
|
218 |
-
)
|
219 |
-
|
220 |
-
generate_btn = gr.Button("🎵 Generate Song", variant="primary", size="lg")
|
221 |
-
|
222 |
-
with gr.Column(scale=1):
|
223 |
-
# Output Section
|
224 |
-
gr.Markdown("## 🎶 Generated Songs")
|
225 |
-
|
226 |
-
generation_status = gr.Textbox(
|
227 |
-
label="Generation Status",
|
228 |
-
value="Ready to generate",
|
229 |
-
interactive=False
|
230 |
-
)
|
231 |
-
|
232 |
-
output_audio = gr.Gallery(
|
233 |
-
label="Generated Audio Files",
|
234 |
-
show_label=True,
|
235 |
-
elem_id="gallery",
|
236 |
-
columns=1,
|
237 |
-
rows=3,
|
238 |
-
object_fit="contain",
|
239 |
-
height="auto",
|
240 |
-
type="filepath"
|
241 |
-
)
|
242 |
-
|
243 |
-
# Format Instructions
|
244 |
-
gr.Markdown("""
|
245 |
-
## 📋 Lyric Format Instructions
|
246 |
-
|
247 |
-
**Structure Tags:**
|
248 |
-
- `[intro]`, `[verse]`, `[chorus]`, `[bridge]`, `[inst]`, `[outro]`
|
249 |
-
- Repeat tags for duration (e.g., `[intro] [intro] [intro]` for ~3 seconds)
|
250 |
-
|
251 |
-
**Text Rules:**
|
252 |
-
- Use `.` to separate sentences
|
253 |
-
- Use `,` to separate sections
|
254 |
-
- Example: `[verse] First line. Second line , [chorus] Chorus text`
|
255 |
-
|
256 |
-
**Audio Prompt:**
|
257 |
-
- 10-second audio file
|
258 |
-
- WAV format preferred
|
259 |
-
- 48kHz sample rate recommended
|
260 |
-
- Defines the musical style/genre
|
261 |
-
""")
|
262 |
-
|
263 |
-
# Event handlers
|
264 |
-
load_btn.click(
|
265 |
-
fn=app.load_model,
|
266 |
-
inputs=[repo_id, model_name, dtype_choice],
|
267 |
-
outputs=[model_status]
|
268 |
-
)
|
269 |
-
|
270 |
-
load_example_btn.click(
|
271 |
-
fn=app.format_lyrics_example,
|
272 |
-
inputs=[example_type],
|
273 |
-
outputs=[lyrics_input]
|
274 |
-
)
|
275 |
-
|
276 |
-
generate_btn.click(
|
277 |
-
fn=app.generate_song,
|
278 |
-
inputs=[lyrics_input, audio_input, n_samples, dtype_choice],
|
279 |
-
outputs=[output_audio, generation_status]
|
280 |
-
)
|
281 |
-
|
282 |
-
return demo
|
283 |
|
|
|
284 |
if __name__ == "__main__":
|
285 |
-
demo
|
286 |
-
demo.launch(
|
287 |
-
server_name="0.0.0.0",
|
288 |
-
server_port=7860,
|
289 |
-
share=False,
|
290 |
-
show_error=True
|
291 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import spaces
|
2 |
+
import gradio as gr
|
3 |
+
import torch
|
4 |
+
from transformers import AutoModel, AutoTokenizer
|
5 |
|
6 |
+
# Load model and tokenizer
|
7 |
+
model_path = "apple/DiffuCoder-7B-cpGRPO"
|
8 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
+
model = AutoModel.from_pretrained(
|
11 |
+
model_path,
|
12 |
+
torch_dtype=torch.bfloat16,
|
13 |
+
trust_remote_code=True
|
14 |
+
).to(device).eval()
|
|
|
|
|
|
|
|
|
|
|
15 |
|
16 |
+
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
|
18 |
+
@spaces.GPU
|
19 |
+
def generate_code(query, temperature=0.4, top_p=0.95, max_new_tokens=256):
|
20 |
+
# Format prompt using chat template
|
21 |
+
prompt = f"""<|im_start|>system
|
22 |
+
You are a helpful coding assistant.<|im_end|>
|
23 |
+
<|im_start|>user
|
24 |
+
{query.strip()}<|im_end|>
|
25 |
+
<|im_start|>assistant
|
26 |
+
"""
|
27 |
+
|
28 |
+
inputs = tokenizer(prompt, return_tensors="pt")
|
29 |
+
input_ids = inputs.input_ids.to(device)
|
30 |
+
attention_mask = inputs.attention_mask.to(device)
|
31 |
+
|
32 |
+
# Generate with token streaming
|
33 |
+
TOKEN_PER_STEP = 1
|
34 |
+
steps = max_new_tokens // TOKEN_PER_STEP
|
35 |
+
|
36 |
+
full_output = ""
|
37 |
+
for _ in range(steps):
|
38 |
+
output = model.diffusion_generate(
|
39 |
+
input_ids,
|
40 |
+
attention_mask=attention_mask,
|
41 |
+
max_new_tokens=TOKEN_PER_STEP,
|
42 |
+
output_history=True,
|
43 |
+
return_dict_in_generate=True,
|
44 |
+
steps=1,
|
45 |
+
temperature=temperature,
|
46 |
+
top_p=top_p,
|
47 |
+
alg="entropy",
|
48 |
+
alg_temp=0.,
|
49 |
+
)
|
50 |
|
51 |
+
# Decode new tokens
|
52 |
+
new_tokens = tokenizer.decode(
|
53 |
+
output.sequences[0, -TOKEN_PER_STEP:].tolist(),
|
54 |
+
skip_special_tokens=True
|
55 |
+
)
|
56 |
|
57 |
+
# Update input for next step
|
58 |
+
input_ids = output.sequences
|
59 |
+
attention_mask = torch.cat([
|
60 |
+
attention_mask,
|
61 |
+
torch.ones(1, 1, dtype=attention_mask.dtype, device=device)
|
62 |
+
], dim=1)
|
63 |
|
64 |
+
# Append to full output and stream
|
65 |
+
full_output += new_tokens
|
66 |
+
yield full_output.split('<|dlm_pad|>')[0].strip()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
67 |
|
68 |
# Create Gradio interface
|
69 |
+
demo = gr.Interface(
|
70 |
+
fn=generate_code,
|
71 |
+
inputs=[
|
72 |
+
gr.Textbox(label="Code Request", lines=3,
|
73 |
+
placeholder="Describe the code you want..."),
|
74 |
+
gr.Slider(0.1, 1.0, value=0.4, label="Temperature"),
|
75 |
+
gr.Slider(0.5, 1.0, value=0.95, label="Top-p"),
|
76 |
+
gr.Slider(32, 512, value=256, step=32, label="Max Tokens")
|
77 |
+
],
|
78 |
+
outputs=gr.Textbox(label="Generated Code", lines=10),
|
79 |
+
title="🧠 DiffuCoder Code Generator",
|
80 |
+
description="Generate code with Apple's DiffuCoder-7B model",
|
81 |
+
examples=[
|
82 |
+
["Write a Python function to calculate factorial"],
|
83 |
+
["Create a function to merge two sorted lists"],
|
84 |
+
["How to reverse a string in JavaScript?"]
|
85 |
+
]
|
86 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
87 |
|
88 |
+
# Run the demo
|
89 |
if __name__ == "__main__":
|
90 |
+
demo.queue().launch()
|
|
|
|
|
|
|
|
|
|
|
|