Spaces:
Running
on
Zero
Running
on
Zero
File size: 12,519 Bytes
39d2f14 597cecf 39d2f14 597cecf 39d2f14 597cecf 39d2f14 597cecf 39d2f14 597cecf 39d2f14 597cecf 39d2f14 597cecf 39d2f14 597cecf 39d2f14 597cecf 39d2f14 597cecf 39d2f14 597cecf 39d2f14 597cecf 39d2f14 597cecf 39d2f14 597cecf 39d2f14 597cecf 39d2f14 597cecf 39d2f14 597cecf 39d2f14 597cecf 39d2f14 597cecf 39d2f14 597cecf 39d2f14 597cecf 39d2f14 597cecf 39d2f14 597cecf 39d2f14 597cecf 39d2f14 597cecf 39d2f14 597cecf 39d2f14 597cecf 39d2f14 597cecf 39d2f14 597cecf 39d2f14 597cecf 39d2f14 597cecf 39d2f14 597cecf 39d2f14 597cecf 39d2f14 597cecf 39d2f14 597cecf 39d2f14 597cecf 39d2f14 597cecf 39d2f14 597cecf 39d2f14 597cecf 39d2f14 597cecf 39d2f14 597cecf 39d2f14 597cecf 39d2f14 597cecf 39d2f14 597cecf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 |
from __future__ import annotations
import contextlib
import copy
import os
from pathlib import Path
from random import random
from typing import Callable
import torch
from torch import nn
from f5_tts.model import DiT, UNetT
from f5_tts.model.utils import (default, exists, lens_to_mask, list_str_to_idx,
list_str_to_tensor, mask_from_frac_lengths,
sample_consecutive_steps, sample_from_list)
from guidance_model import Guidance
class UniModel(nn.Module):
def __init__(
self,
model: DiT, # teacher model (dit model)
checkpoint_path: str = "",
second_time: bool = True,
use_fp16: bool = True,
real_guidance_scale: float = 2.0,
fake_guidance_scale: float = 0.0,
gen_cls_loss: bool = False,
sway_coeff: float = -1.0,
vocab_char_map: dict[str, int] | None = None,
frac_lengths_mask: tuple[float, float] = (0.7, 1.0),
):
super().__init__()
if checkpoint_path != "":
if "model_last.pt" in os.listdir(checkpoint_path):
latest_checkpoint = "model_last.pt"
else:
latest_checkpoint = sorted(
[f for f in os.listdir(checkpoint_path) if f.endswith(".pt")],
key=lambda x: int("".join(filter(str.isdigit, x))),
)[-1]
checkpoint = torch.load(
f"{checkpoint_path}/{latest_checkpoint}",
weights_only=True,
map_location="cpu",
)
if "scale" in checkpoint:
self.scale = checkpoint["scale"]
else:
self.scale = 1.0
print(f"Loaded teacher model with scale: {self.scale}")
if "step" in checkpoint:
state = checkpoint["model_state_dict"]
else:
checkpoint["model_state_dict"] = {
k.replace("ema_model.", ""): v
for k, v in checkpoint["ema_model_state_dict"].items()
if k not in ["initted", "step"]
}
state = checkpoint["model_state_dict"]
# only load the DiT module
filtered_state_dict = {
k.replace("transformer.", ""): v
for k, v in state.items()
if k.startswith("transformer.")
}
model.load_state_dict(filtered_state_dict, strict=False)
else:
self.scale = 1.0
real_unet = copy.deepcopy(model)
real_unet.time_embed2 = None
fake_unet = copy.deepcopy(model)
# Instantiate Guidance, which internally uses real_unet and fake_unet initialized from the teacher
self.guidance_model = Guidance(
real_unet=real_unet,
fake_unet=fake_unet,
use_fp16=use_fp16,
real_guidance_scale=real_guidance_scale,
fake_guidance_scale=fake_guidance_scale,
gen_cls_loss=gen_cls_loss,
sway_coeff=sway_coeff,
)
self.feedforward_model = copy.deepcopy(model) # initialize the student model
self.feedforward_model.requires_grad_(True)
self.feedforward_model.time_embed2 = None
self.vocab_char_map = vocab_char_map
self.frac_lengths_mask = frac_lengths_mask
self.second_time = second_time # fake_unet.time_embed2 is not None
def forward(
self,
inp: float["b n d"], # mel
text: int["b nt"] | list[str],
*,
lens: int["b"] | None = None,
student_steps: list[int] = [0, 0.25, 0.5, 0.75],
update_generator: bool = False,
):
"""
Forward pass that routes to either generator_forward or guidance_forward
in the Guidance class, depending on the arguments.
Parameters:
-----------
generator_turn: bool
If True, run the generator forward pass (distribution matching loss, etc.)
guidance_turn: bool
If True, run the guidance forward pass (fake loss, cls loss, etc.)
data_dict: dict
Input dictionary containing the necessary keys for the forward passes.
Expected keys may include:
"inp": Tensor (B, N, D) - input mel or latent
"text": Tensor or list[str] - text input
"rand_span_mask": Tensor (B, N) - boolean mask
"real_data": dict with keys like:
"inp", "text", "rand_span_mask"
Returns:
--------
loss_dict: dict[str, Tensor]
Dictionary of losses.
log_dict: dict[str, Tensor or float]
Dictionary of logging tensors or values.
"""
batch, seq_len, dtype, device = *inp.shape[:2], inp.dtype, inp.device
# handle text as string
if isinstance(text, list):
if exists(self.vocab_char_map):
text = list_str_to_idx(text, self.vocab_char_map).to(device)
else:
text = list_str_to_tensor(text).to(device)
assert text.shape[0] == batch
# lens and mask
if not exists(lens):
lens = torch.full((batch,), seq_len, device=device)
mask = lens_to_mask(
lens, length=seq_len
) # useless here, as collate_fn will pad to max length in batch
# sample from the list of student steps
time = sample_from_list(student_steps, batch).to(device)
c_time, p_time = sample_consecutive_steps(student_steps)
time = torch.ones_like(time) * c_time
p_time = torch.ones_like(time) * p_time
frac_lengths = (
torch.zeros((batch,), device=device)
.float()
.uniform_(*self.frac_lengths_mask)
)
rand_span_mask = mask_from_frac_lengths(lens, frac_lengths)
if exists(mask):
rand_span_mask &= mask
# # use generated output from previous step as input
with torch.no_grad():
x1 = inp
x0 = torch.randn_like(x1)
t = p_time.unsqueeze(-1).unsqueeze(-1)
phi = (1 - t) * x0 + t * x1
cond = torch.where(rand_span_mask[..., None], torch.zeros_like(x1), x1)
pred = self.feedforward_model(
x=phi,
cond=cond,
text=text,
time=p_time,
drop_audio_cond=False,
drop_text=False, # make sure the cfg=1
) # flow prediction
# predicted mel spectrogram
output = phi + (1 - t) * pred
output[~rand_span_mask] = inp[~rand_span_mask]
# forward diffusion
x1 = output
x0 = torch.randn_like(x1)
t = time.unsqueeze(-1).unsqueeze(-1)
phi = (1 - t) * x0 + t * x1
cond = torch.where(rand_span_mask[..., None], torch.zeros_like(x1), x1)
with torch.no_grad() if not update_generator else contextlib.nullcontext():
pred = self.feedforward_model(
x=phi,
cond=cond,
text=text,
time=time,
drop_audio_cond=False,
drop_text=False, # make sure no cfg is used
)
# predicted mel spectrogram
output = phi + (1 - t) * pred
output[~rand_span_mask] = inp[~rand_span_mask]
if update_generator:
generator_data_dict = {
"inp": output,
"text": text,
"rand_span_mask": rand_span_mask,
"second_time": time if self.second_time else None,
"mse_loss": time.mean() == student_steps[-1].mean(),
"real_data": {
"inp": inp,
"text": text,
"rand_span_mask": rand_span_mask,
},
}
# avoid any side effects of gradient accumulation
# self.guidance_model.requires_grad_(False)
# self.feedforward_model.requires_grad_(True)
generator_loss_dict, generator_log_dict = self.guidance_model(
generator_turn=True,
guidance_turn=False,
generator_data_dict=generator_data_dict,
guidance_data_dict=None,
)
generator_log_dict["ground_truth"] = x1
generator_log_dict["generator_input"] = phi
generator_log_dict["generator_output"] = output
generator_log_dict["generator_cond"] = cond
generator_log_dict["time"] = time
return generator_loss_dict, generator_log_dict
else:
guidance_data_dict = {
"inp": output.detach(),
"text": text,
"rand_span_mask": rand_span_mask,
"second_time": time if self.second_time else None,
"real_data": {
"inp": inp,
"text": text,
"rand_span_mask": rand_span_mask,
},
}
# avoid any side effects of gradient accumulation
# self.feedforward_model.requires_grad_(False)
# self.guidance_model.requires_grad_(True)
guidance_loss_dict, guidance_log_dict = self.guidance_model(
generator_turn=False,
guidance_turn=True,
generator_data_dict=None,
guidance_data_dict=guidance_data_dict,
)
# self.feedforward_model.requires_grad_(True)
return guidance_loss_dict, guidance_log_dict
# return guidance_loss_dict, guidance_log_dict, generator_loss_dict, generator_log_dict
if __name__ == "__main__":
from torch.utils.data import DataLoader, Dataset, SequentialSampler
from f5_tts.model.dataset import (DynamicBatchSampler, collate_fn,
load_dataset)
from f5_tts.model.utils import get_tokenizer
bsz = 16
tokenizer = "pinyin" # 'pinyin', 'char', or 'custom'
tokenizer_path = None # if tokenizer = 'custom', define the path to the tokenizer you want to use (should be vocab.txt)
dataset_name = "Emilia_ZH_EN"
if tokenizer == "custom":
tokenizer_path = tokenizer_path
else:
tokenizer_path = dataset_name
vocab_char_map, vocab_size = get_tokenizer(tokenizer_path, tokenizer)
dit = DiT(
dim=1024,
depth=22,
heads=16,
ff_mult=2,
text_dim=512,
conv_layers=4,
text_num_embeds=vocab_size,
mel_dim=100,
)
model = UniModel(
dit,
checkpoint_path="/data4/F5TTS/ckpts/F5TTS_Base_norm_flow_8GPU_vocos_pinyin_Emilia_ZH_EN",
gen_cls_loss=True,
vocab_char_map=vocab_char_map,
frac_lengths_mask=(0.7, 1.0),
).cuda()
# batch = next(iter(train_dataloader))
# torch.save(batch, "batch.pt")
batch = torch.load("batch.pt")
inp, text, lens = (
batch["mel"].permute(0, 2, 1).cuda(),
batch["text"],
batch["mel_lengths"].cuda(),
)
# text = ["hello world"] * bsz
# lens = torch.randint(1, 1000, (bsz,)).cuda()
# inp = torch.randn(bsz, lens.max(), 100).cuda()
with torch.autocast(device_type="cuda", dtype=torch.float16):
num_student_step = 4
guidance_loss_dict, guidance_log_dict = model(
inp,
text,
lens=lens,
update_generator=False,
student_steps=(torch.linspace(0.0, 1.0, num_student_step + 1)[:-1]),
)
generator_loss_dict, generator_log_dict = model(
inp,
text,
lens=lens,
update_generator=True,
student_steps=(torch.linspace(0.0, 1.0, num_student_step + 1)[:-1]),
)
print(guidance_loss_dict)
print(generator_loss_dict)
guidance_loss = 0
guidance_loss += guidance_loss_dict["loss_fake_mean"]
guidance_loss += guidance_loss_dict["guidance_cls_loss"]
generator_loss = 0
generator_loss += generator_loss_dict["loss_dm"]
generator_loss += generator_loss_dict["loss_ctc"]
generator_loss += generator_loss_dict["loss_sim"]
generator_loss += generator_loss_dict["gen_cls_loss"]
generator_loss += generator_loss_dict["loss_mse"]
guidance_loss.backward()
generator_loss.backward()
|