File size: 27,717 Bytes
39d2f14
 
 
 
 
 
 
 
 
 
597cecf
39d2f14
597cecf
39d2f14
597cecf
39d2f14
 
597cecf
39d2f14
 
597cecf
39d2f14
597cecf
 
 
 
39d2f14
 
 
 
 
 
 
 
597cecf
 
 
 
 
 
 
 
 
39d2f14
 
597cecf
 
 
 
39d2f14
597cecf
 
39d2f14
597cecf
39d2f14
 
597cecf
39d2f14
597cecf
 
 
 
 
 
 
39d2f14
 
 
 
597cecf
39d2f14
 
597cecf
 
 
 
39d2f14
 
 
597cecf
 
 
 
 
 
 
 
 
 
 
 
 
 
39d2f14
 
597cecf
39d2f14
597cecf
 
 
 
 
 
 
39d2f14
 
597cecf
 
 
 
 
39d2f14
 
 
 
 
597cecf
 
 
 
 
39d2f14
 
 
 
 
597cecf
 
 
 
 
39d2f14
 
597cecf
39d2f14
597cecf
39d2f14
 
597cecf
 
 
39d2f14
597cecf
39d2f14
 
 
 
597cecf
 
39d2f14
597cecf
39d2f14
 
597cecf
 
39d2f14
 
 
 
 
 
597cecf
 
 
 
 
39d2f14
 
597cecf
 
 
 
39d2f14
 
597cecf
39d2f14
 
 
 
 
 
 
 
 
 
 
 
597cecf
39d2f14
 
 
 
597cecf
 
 
39d2f14
 
 
 
 
 
 
 
 
 
 
 
597cecf
39d2f14
597cecf
39d2f14
 
597cecf
39d2f14
 
 
 
 
 
 
 
597cecf
39d2f14
 
 
 
 
597cecf
 
 
39d2f14
 
597cecf
 
39d2f14
 
597cecf
 
 
 
 
39d2f14
597cecf
39d2f14
 
597cecf
39d2f14
 
597cecf
39d2f14
 
597cecf
 
 
 
 
 
39d2f14
597cecf
39d2f14
 
 
597cecf
 
 
 
39d2f14
597cecf
39d2f14
 
597cecf
39d2f14
 
 
 
597cecf
39d2f14
597cecf
39d2f14
 
597cecf
 
 
 
 
 
39d2f14
597cecf
 
39d2f14
597cecf
 
39d2f14
 
 
 
 
 
 
597cecf
39d2f14
 
 
597cecf
39d2f14
 
597cecf
 
39d2f14
 
 
 
 
 
 
 
 
 
 
 
 
 
597cecf
 
 
39d2f14
 
597cecf
 
 
39d2f14
597cecf
 
39d2f14
 
597cecf
39d2f14
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
597cecf
 
39d2f14
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
597cecf
 
 
 
 
39d2f14
 
 
597cecf
39d2f14
 
 
 
 
 
597cecf
 
39d2f14
597cecf
39d2f14
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
597cecf
39d2f14
 
 
 
 
 
597cecf
39d2f14
597cecf
 
39d2f14
597cecf
 
39d2f14
 
 
 
 
597cecf
 
39d2f14
 
 
 
 
 
 
 
 
 
597cecf
39d2f14
 
 
 
 
 
597cecf
39d2f14
597cecf
39d2f14
597cecf
 
39d2f14
 
 
 
 
 
 
 
 
597cecf
39d2f14
 
 
 
 
 
 
 
 
 
 
 
 
 
597cecf
39d2f14
 
 
 
 
597cecf
39d2f14
597cecf
 
39d2f14
597cecf
 
 
39d2f14
 
 
 
 
597cecf
39d2f14
 
 
 
 
 
 
 
 
 
 
 
 
597cecf
39d2f14
 
 
 
 
 
 
 
597cecf
 
 
 
39d2f14
 
 
 
597cecf
 
 
39d2f14
 
 
 
597cecf
39d2f14
 
 
 
 
 
 
 
597cecf
39d2f14
 
 
597cecf
39d2f14
 
 
 
 
597cecf
 
 
39d2f14
 
 
 
 
 
 
597cecf
 
 
 
 
39d2f14
 
 
597cecf
39d2f14
 
597cecf
39d2f14
 
 
 
 
 
 
 
 
 
 
 
597cecf
 
 
39d2f14
 
 
597cecf
39d2f14
597cecf
39d2f14
 
 
 
597cecf
 
39d2f14
597cecf
 
 
39d2f14
 
 
 
 
 
 
597cecf
 
 
 
 
 
 
 
39d2f14
 
 
597cecf
 
 
 
 
 
 
 
 
 
39d2f14
 
 
 
 
 
 
 
 
 
 
 
 
 
 
597cecf
39d2f14
597cecf
39d2f14
 
 
597cecf
 
 
39d2f14
597cecf
 
 
39d2f14
 
 
 
 
597cecf
 
 
39d2f14
 
 
 
 
597cecf
39d2f14
 
 
 
 
597cecf
39d2f14
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
597cecf
 
 
39d2f14
 
 
 
 
 
 
 
597cecf
39d2f14
 
 
 
 
 
 
 
597cecf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
39d2f14
 
 
597cecf
39d2f14
597cecf
39d2f14
 
 
 
 
 
 
 
 
 
 
 
597cecf
 
 
39d2f14
597cecf
39d2f14
597cecf
 
 
39d2f14
597cecf
39d2f14
 
597cecf
39d2f14
 
 
 
 
 
 
 
 
 
597cecf
39d2f14
 
 
 
 
 
597cecf
39d2f14
 
 
597cecf
 
 
39d2f14
 
 
597cecf
 
 
39d2f14
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
"""
ein notation:
b - batch
n - sequence
nt - text sequence
nw - raw wave length
d - dimension
"""

from __future__ import annotations

from random import random
from typing import Callable

import numpy as np
import torch
import torch.nn.functional as F
from torch import nn

from ctcmodel import ConformerCTC
from discriminator_conformer import ConformerDiscirminator
from ecapa_tdnn import ECAPA_TDNN
from f5_tts.model import DiT
from f5_tts.model.utils import (default, exists, lens_to_mask, list_str_to_idx,
                                list_str_to_tensor, mask_from_frac_lengths)


class NoOpContext:
    def __enter__(self):
        pass

    def __exit__(self, *args):
        pass


def predict_flow(
    transformer,  # flow model
    x,  # noisy input
    cond,  # mask (prompt mask + length mask)
    text,  # text input
    time,  # time step
    second_time=None,
    cfg_strength=1.0,
):
    pred = transformer(
        x=x,
        cond=cond,
        text=text,
        time=time,
        second_time=second_time,
        drop_audio_cond=False,
        drop_text=False,
    )

    if cfg_strength < 1e-5:
        return pred

    null_pred = transformer(
        x=x,
        cond=cond,
        text=text,
        time=time,
        second_time=second_time,
        drop_audio_cond=True,
        drop_text=True,
    )

    return pred + (pred - null_pred) * cfg_strength


def _kl_dist_func(x, y):
    log_probs = F.log_softmax(x, dim=2)
    target_probs = F.log_softmax(y, dim=2)
    return torch.nn.functional.kl_div(
        log_probs, target_probs, reduction="batchmean", log_target=True
    )


class Guidance(nn.Module):
    def __init__(
        self,
        real_unet: DiT,  # teacher flow model
        fake_unet: DiT,  # student flow model
        use_fp16: bool = True,
        real_guidance_scale: float = 0.0,
        fake_guidance_scale: float = 0.0,
        gen_cls_loss: bool = False,
        sv_path_en: str = "",
        sv_path_zh: str = "",
        ctc_path: str = "",
        sway_coeff: float = 0.0,
        scale: float = 1.0,
    ):
        super().__init__()
        self.vocab_size = real_unet.vocab_size

        if ctc_path != "":
            model = ConformerCTC(
                vocab_size=real_unet.vocab_size,
                mel_dim=real_unet.mel_dim,
                num_heads=8,
                d_hid=512,
                nlayers=6,
            )
            self.ctc_model = model.eval()
            self.ctc_model.requires_grad_(False)
            self.ctc_model.load_state_dict(
                torch.load(ctc_path, weights_only=True, map_location="cpu")[
                    "model_state_dict"
                ]
            )

        if sv_path_en != "":
            model = ECAPA_TDNN()
            self.sv_model_en = model.eval()
            self.sv_model_en.requires_grad_(False)
            self.sv_model_en.load_state_dict(
                torch.load(sv_path, weights_only=True, map_location="cpu")[
                    "model_state_dict"
                ]
            )

        if sv_path_zh != "":
            model = ECAPA_TDNN()
            self.sv_model_zh = model.eval()
            self.sv_model_zh.requires_grad_(False)
            self.sv_model_zh.load_state_dict(
                torch.load(sv_path_zh, weights_only=True, map_location="cpu")[
                    "model_state_dict"
                ]
            )

        self.scale = scale

        self.real_unet = real_unet
        self.real_unet.requires_grad_(False)  # no update on the teacher model

        self.fake_unet = fake_unet
        self.fake_unet.requires_grad_(True)  # update the student model

        self.real_guidance_scale = real_guidance_scale
        self.fake_guidance_scale = fake_guidance_scale

        assert self.fake_guidance_scale == 0, "no guidance for fake"

        self.use_fp16 = use_fp16

        self.gen_cls_loss = gen_cls_loss

        self.sway_coeff = sway_coeff

        if self.gen_cls_loss:
            self.cls_pred_branch = ConformerDiscirminator(
                input_dim=(self.fake_unet.depth + 1) * self.fake_unet.dim
                + 3 * 512,  # 3 is the number of layers from the CTC model
                num_layers=3,
                channels=self.fake_unet.dim // 2,
            )

            self.cls_pred_branch.requires_grad_(True)

        self.network_context_manager = (
            torch.autocast(device_type="cuda", dtype=torch.float16)
            if self.use_fp16
            else NoOpContext()
        )

        from torch.utils.data import DataLoader, Dataset, SequentialSampler

        from f5_tts.model.dataset import (DynamicBatchSampler, collate_fn,
                                          load_dataset)
        from f5_tts.model.utils import get_tokenizer

        bsz = 16

        tokenizer = "pinyin"  # 'pinyin', 'char', or 'custom'
        tokenizer_path = None  # if tokenizer = 'custom', define the path to the tokenizer you want to use (should be vocab.txt)
        dataset_name = "Emilia_ZH_EN"
        if tokenizer == "custom":
            tokenizer_path = tokenizer_path
        else:
            tokenizer_path = dataset_name
        vocab_char_map, vocab_size = get_tokenizer(tokenizer_path, tokenizer)

        self.vocab_char_map = vocab_char_map

    def compute_distribution_matching_loss(
        self,
        inp: float["b n d"] | float["b nw"],  # mel or raw wave, ground truth latent
        text: int["b nt"] | list[str],  # text input
        *,
        second_time: torch.Tensor | None = None,  # second time step for flow prediction
        rand_span_mask: (
            bool["b n d"] | bool["b nw"] | None
        ) = None,  # combined mask (prompt mask + padding mask)
    ):
        """
        Compute DMD loss (L_DMD) between the student distribution and teacher distribution.
        Following the DMDSpeech logic:
        - Sample time t
        - Construct noisy input phi = (1 - t)*x0 + t*x1, where x0 is noise and x1 is inp
        - Predict flows with teacher (f_phi) and student (G_theta)
        - Compute gradient that aligns student distribution with teacher distribution

        The code is adapted from F5-TTS but conceptualized per DMD:
        L_DMD encourages p_theta to match p_data via the difference between teacher and student predictions.
        """

        original_inp = inp

        with torch.no_grad():
            batch, seq_len, dtype, device = *inp.shape[:2], inp.dtype, inp.device

            # mel is x1
            x1 = inp

            # x0 is gaussian noise
            x0 = torch.randn_like(x1)

            # time step
            time = torch.rand((batch,), dtype=dtype, device=device)

            # get flow
            t = time.unsqueeze(-1).unsqueeze(-1)
            # t = t + self.sway_coeff * (torch.cos(torch.pi / 2 * t) - 1 + t)
            sigma_t, alpha_t = (1 - t), t

            phi = (1 - t) * x0 + t * x1  # noisy x
            flow = x1 - x0  # flow target

            # only predict what is within the random mask span for infilling
            cond = torch.where(rand_span_mask[..., None], torch.zeros_like(x1), x1)

            # run at full precision as autocast and no_grad doesn't work well together
            with self.network_context_manager:
                pred_fake = predict_flow(
                    self.fake_unet,
                    phi,
                    cond,  # mask (prompt mask + length mask)
                    text,  # text input
                    time,  # time step
                    second_time=second_time,
                    cfg_strength=self.fake_guidance_scale,
                )

            # pred = (x1 - x0), thus phi + (1-t) * pred = (1 - t) * x0 + t * x1 + (1 - t) * (x1 - x0) = (1 - t) * x1 + t * x1 = x1
            pred_fake_image = phi + (1 - t) * pred_fake
            pred_fake_image[~rand_span_mask] = inp[~rand_span_mask]

            with self.network_context_manager:
                pred_real = predict_flow(
                    self.real_unet,
                    phi,
                    cond,
                    text,
                    time,
                    cfg_strength=self.real_guidance_scale,
                )

            pred_real_image = phi + (1 - t) * pred_real
            pred_real_image[~rand_span_mask] = inp[~rand_span_mask]

            p_real = inp - pred_real_image
            p_fake = inp - pred_fake_image

            grad = (p_real - p_fake) / torch.abs(p_real).mean(dim=[1, 2], keepdim=True)
            grad = torch.nan_to_num(grad)

            # grad  = grad / sigma_t # pred_fake - pred_real
            # grad = grad * (1 + sigma_t / alpha_t)

            # grad = grad / (1 + sigma_t / alpha_t) # noise
            # grad = grad / sigma_t # score difference
            # grad = grad * alpha_t
            # grad = grad * (sigma_t ** 2 / alpha_t)

            # grad = grad * (alpha_t + sigma_t ** 2 / alpha_t)

        # The DMD loss: MSE to move student distribution closer to teacher distribution
        # Only optimize over the masked region
        loss = (
            0.5
            * F.mse_loss(
                original_inp.float(),
                (original_inp - grad).detach().float(),
                reduction="none",
            )
            * rand_span_mask.unsqueeze(-1)
        )
        loss = loss.sum() / (rand_span_mask.sum() * grad.size(-1))

        loss_dict = {"loss_dm": loss}

        dm_log_dict = {
            "dmtrain_time": time.detach().float(),
            "dmtrain_noisy_inp": phi.detach().float(),
            "dmtrain_pred_real_image": pred_real_image.detach().float(),
            "dmtrain_pred_fake_image": pred_fake_image.detach().float(),
            "dmtrain_grad": grad.detach().float(),
            "dmtrain_gradient_norm": torch.norm(grad).item(),
        }

        return loss_dict, dm_log_dict

    def compute_ctc_sv_loss(
        self,
        real_inp: torch.Tensor,  # real data latent
        fake_inp: torch.Tensor,  # student-generated data latent
        text: torch.Tensor,
        text_lens: torch.Tensor,
        rand_span_mask: torch.Tensor,
        second_time: torch.Tensor | None = None,
    ):
        """
        Compute CTC + SV loss for direct metric optimization, as described in DMDSpeech.
        - CTC loss reduces WER
        - SV loss improves speaker similarity

        Both CTC and SV models operate on latents.
        """

        # compute CTC loss
        out, layer, ctc_loss = self.ctc_model(
            fake_inp * self.scale, text, text_lens
        )  # lengths from rand_span_mask or known

        with torch.no_grad():
            real_out, real_layers, ctc_loss_test = self.ctc_model(
                real_inp * self.scale, text, text_lens
            )
            real_logits = real_out.log_softmax(dim=2)
            # emb_real = self.sv_model(real_inp * self.scale) # snippet from prompt region

        fake_logits = out.log_softmax(dim=2)
        kl_loss = F.kl_div(fake_logits, real_logits, reduction="mean", log_target=True)

        # For SV:
        # Extract speaker embeddings from real (prompt) and fake:
        # emb_fake = self.sv_model(fake_inp * self.scale)
        # sv_loss = 1 - F.cosine_similarity(emb_real, emb_fake, dim=-1).mean()

        input_lengths = rand_span_mask.sum(axis=-1).cpu().numpy()
        prompt_lengths = real_inp.size(1) - rand_span_mask.sum(axis=-1).cpu().numpy()

        chunks_real = []
        chunks_fake = []
        mel_len = min([int(input_lengths.min().item() - 1), 300])

        for bib in range(len(input_lengths)):
            prompt_length = int(prompt_lengths[bib].item())
            mel_length = int(input_lengths[bib].item())
            mask = rand_span_mask[bib]
            mask = torch.where(mask)[0]

            prompt_start = mask[0].cpu().numpy()
            prompt_end = mask[-1].cpu().numpy()

            if prompt_end - mel_len <= prompt_start:
                random_start = np.random.randint(0, mel_length - mel_len)
            else:
                random_start = np.random.randint(prompt_start, prompt_end - mel_len)

            chunks_fake.append(fake_inp[bib, random_start : random_start + mel_len, :])
            chunks_real.append(real_inp[bib, :mel_len, :])

        chunks_real = torch.stack(chunks_real, dim=0)
        chunks_fake = torch.stack(chunks_fake, dim=0)

        with torch.no_grad():
            emb_real_en = self.sv_model_en(chunks_real * self.scale)
        emb_fake_en = self.sv_model_en(chunks_fake * self.scale)

        sv_loss_en = 1 - F.cosine_similarity(emb_real_en, emb_fake_en, dim=-1).mean()

        with torch.no_grad():
            emb_real_zh = self.sv_model_zh(chunks_real * self.scale)
        emb_fake_zh = self.sv_model_zh(chunks_fake * self.scale)

        sv_loss_zh = 1 - F.cosine_similarity(emb_real_zh, emb_fake_zh, dim=-1).mean()

        sv_loss = (sv_loss_en + sv_loss_zh) / 2

        return (
            {"loss_ctc": ctc_loss, "loss_kl": kl_loss, "loss_sim": sv_loss},
            layer,
            real_layers,
        )

    def compute_loss_fake(
        self,
        inp: torch.Tensor,  # student generator output
        text: torch.Tensor | list[str],
        rand_span_mask: torch.Tensor,
        second_time: torch.Tensor | None = None,
    ):
        """
        Compute flow loss for the fake flow model, which is trained to estimate the flow (score) of the student distribution.

        This is the same as L_diff in the paper.
        """

        # Similar to distribution matching, but only train fake to predict flow directly
        batch, seq_len, dtype, device = *inp.shape[:2], inp.dtype, inp.device

        if isinstance(text, list):
            if exists(self.vocab_char_map):
                text = list_str_to_idx(text, self.vocab_char_map).to(device)
            else:
                text = list_str_to_tensor(text).to(device)
            assert text.shape[0] == batch

        # Sample a time
        time = torch.rand((batch,), dtype=dtype, device=device)

        x1 = inp
        x0 = torch.randn_like(x1)
        t = time.unsqueeze(-1).unsqueeze(-1)

        phi = (1 - t) * x0 + t * x1
        flow = x1 - x0
        cond = torch.where(rand_span_mask[..., None], torch.zeros_like(x1), x1)

        with self.network_context_manager:
            pred = self.fake_unet(
                x=phi,
                cond=cond,
                text=text,
                time=time,
                second_time=second_time,
                drop_audio_cond=False,
                drop_text=False,  # make sure the cfg=1
            )

        # Compute MSE between predicted flow and actual flow, masked by rand_span_mask
        loss = F.mse_loss(pred, flow, reduction="none")
        loss = loss[rand_span_mask].mean()

        loss_dict = {"loss_fake_mean": loss}
        log_dict = {
            "faketrain_noisy_inp": phi.detach().float(),
            "faketrain_x1": x1.detach().float(),
            "faketrain_pred_flow": pred.detach().float(),
        }

        return loss_dict, log_dict

    def compute_cls_logits(
        self,
        inp: torch.Tensor,  # student generator output
        layer: torch.Tensor,
        text: torch.Tensor,
        rand_span_mask: torch.Tensor,
        second_time: torch.Tensor | None = None,
        guidance: bool = False,
    ):
        """
        Compute adversarial loss logits for the generator.

        This is used to compute L_adv in the paper.

        """
        context_no_grad = torch.no_grad if guidance else NoOpContext

        with context_no_grad():
            # If we are not doing generator classification loss, return zeros
            if not self.gen_cls_loss:
                return torch.zeros_like(inp[..., 0])  # shape (b, n)

            # For classification, we need some representation:
            # We'll mimic the logic from compute_loss_fake

            batch, seq_len, dtype, device = *inp.shape[:2], inp.dtype, inp.device
            if isinstance(text, list):
                if exists(self.vocab_char_map):
                    text = list_str_to_idx(text, self.vocab_char_map).to(device)
                else:
                    text = list_str_to_tensor(text).to(device)
                assert text.shape[0] == batch

            # Sample a time
            time = torch.rand((batch,), dtype=dtype, device=device)

            x1 = inp
            x0 = torch.randn_like(x1)
            t = time.unsqueeze(-1).unsqueeze(-1)

            phi = (1 - t) * x0 + t * x1
            cond = torch.where(rand_span_mask[..., None], torch.zeros_like(x1), x1)

            with self.network_context_manager:
                layers = self.fake_unet(
                    x=phi,
                    cond=cond,
                    text=text,
                    time=time,
                    second_time=second_time,
                    drop_audio_cond=False,
                    drop_text=False,  # make sure the cfg=1
                    classify_mode=True,
                )
                # layers = torch.stack(layers, dim=0)

        if guidance:
            layers = [layer.detach() for layer in layers]
        layer = layer[-3:]  # only use the last 3 layers
        layer = [l.transpose(-1, -2) for l in layer]
        # layer = [F.interpolate(l, mode='nearest', scale_factor=4).transpose(-1, -2) for l in layer]
        if layer[0].size(1) < layers[0].size(1):
            layer = [F.pad(l, (0, 0, 0, layers[0].size(1) - l.size(1))) for l in layer]

        layers = layer + layers
        # logits: (b, 1)
        logits = self.cls_pred_branch(layers)

        return logits, layers

    def compute_generator_cls_loss(
        self,
        inp: torch.Tensor,  # student generator output
        layer: torch.Tensor,
        real_layers: torch.Tensor,
        text: torch.Tensor,
        rand_span_mask: torch.Tensor,
        second_time: torch.Tensor | None = None,
        mse_loss: bool = False,
        mse_inp: torch.Tensor | None = None,
    ):
        """
        Compute the adversarial loss for the generator.
        """

        # Compute classification loss for generator:
        if not self.gen_cls_loss:
            return {"gen_cls_loss": 0}

        logits, fake_layers = self.compute_cls_logits(
            inp, layer, text, rand_span_mask, second_time, guidance=False
        )

        loss = ((1 - logits) ** 2).mean()

        return {"gen_cls_loss": loss, "loss_mse": 0}

    def compute_guidance_cls_loss(
        self,
        fake_inp: torch.Tensor,
        text: torch.Tensor,
        rand_span_mask: torch.Tensor,
        real_data: dict,
        second_time: torch.Tensor | None = None,
    ):
        """
        This function computes the adversarial loss for the discirminator.

        The discriminator is trained to classify the generator output as real or fake.
        """

        with torch.no_grad():
            # get layers from CTC model
            _, layer = self.ctc_model(fake_inp * self.scale)

        logits_fake, _ = self.compute_cls_logits(
            fake_inp.detach(), layer, text, rand_span_mask, second_time, guidance=True
        )
        loss_fake = (logits_fake**2).mean()

        real_inp = real_data["inp"]

        with torch.no_grad():
            # get layers from CTC model
            _, layer = self.ctc_model(real_inp * self.scale)

        logits_real, _ = self.compute_cls_logits(
            real_inp.detach(), layer, text, rand_span_mask, second_time, guidance=True
        )
        loss_real = ((1 - logits_real) ** 2).mean()

        classification_loss = loss_real + loss_fake

        loss_dict = {"guidance_cls_loss": classification_loss}
        log_dict = {
            "pred_realism_on_real": loss_real.detach().item(),
            "pred_realism_on_fake": loss_fake.detach().item(),
        }

        return loss_dict, log_dict

    def generator_forward(
        self,
        inp: torch.Tensor,
        text: torch.Tensor,
        text_lens: torch.Tensor,
        text_normalized: torch.Tensor,
        text_normalized_lens: torch.Tensor,
        rand_span_mask: torch.Tensor,
        real_data: (
            dict | None
        ) = None,  # ground truth data (primarily prompt) to compute SV loss
        second_time: torch.Tensor | None = None,
        mse_loss: bool = False,
    ):
        """
        Forward pass for the generator.

        This function computes the loss for the generator, which includes:
        - Distribution matching loss (L_DMD)
        - Adversarial generator loss (L_adv(G; D))
        - CTC/SV loss (L_ctc + L_sv)
        """

        # 1. Compute DM loss
        dm_loss_dict, dm_log_dict = self.compute_distribution_matching_loss(
            inp, text, rand_span_mask=rand_span_mask, second_time=second_time
        )

        ctc_sv_loss_dict = {}
        cls_loss_dict = {}

        # 2. Compute optional CTC/SV loss if real_data provided
        if real_data is not None:
            real_inp = real_data["inp"]
            ctc_sv_loss_dict, layer, real_layers = self.compute_ctc_sv_loss(
                real_inp,
                inp,
                text_normalized,
                text_normalized_lens,
                rand_span_mask,
                second_time=second_time,
            )

            # 3. Compute optional classification loss
            if self.gen_cls_loss:
                cls_loss_dict = self.compute_generator_cls_loss(
                    inp,
                    layer,
                    real_layers,
                    text,
                    rand_span_mask=rand_span_mask,
                    second_time=second_time,
                    mse_inp=real_data["inp"] if real_data is not None else None,
                    mse_loss=mse_loss,
                )

        loss_dict = {**dm_loss_dict, **cls_loss_dict, **ctc_sv_loss_dict}
        log_dict = {**dm_log_dict}

        return loss_dict, log_dict

    def guidance_forward(
        self,
        fake_inp: torch.Tensor,
        text: torch.Tensor,
        text_lens: torch.Tensor,
        rand_span_mask: torch.Tensor,
        real_data: dict | None = None,
        second_time: torch.Tensor | None = None,
    ):
        """
        Forward pass for the guidnce module (discriminator + fake flow function).

        This function computes the loss for the guidance module, which includes:
        - Flow matching loss (L_diff)
        - Adversarial discrminator loss (L_adv(D; G))

        """

        # Compute fake loss (like epsilon prediction loss in Guidance)
        fake_loss_dict, fake_log_dict = self.compute_loss_fake(
            fake_inp, text, rand_span_mask=rand_span_mask, second_time=second_time
        )

        # If gen_cls_loss, compute guidance cls loss
        cls_loss_dict = {}
        cls_log_dict = {}
        if self.gen_cls_loss and real_data is not None:
            cls_loss_dict, cls_log_dict = self.compute_guidance_cls_loss(
                fake_inp, text, rand_span_mask, real_data, second_time=second_time
            )

        loss_dict = {**fake_loss_dict, **cls_loss_dict}
        log_dict = {**fake_log_dict, **cls_log_dict}

        return loss_dict, log_dict

    def forward(
        self,
        generator_turn=False,
        guidance_turn=False,
        generator_data_dict=None,
        guidance_data_dict=None,
    ):
        if generator_turn:
            loss_dict, log_dict = self.generator_forward(
                inp=generator_data_dict["inp"],
                text=generator_data_dict["text"],
                text_lens=generator_data_dict["text_lens"],
                text_normalized=generator_data_dict["text_normalized"],
                text_normalized_lens=generator_data_dict["text_normalized_lens"],
                rand_span_mask=generator_data_dict["rand_span_mask"],
                real_data=generator_data_dict.get("real_data", None),
                second_time=generator_data_dict.get("second_time", None),
                mse_loss=generator_data_dict.get("mse_loss", False),
            )
        elif guidance_turn:
            loss_dict, log_dict = self.guidance_forward(
                fake_inp=guidance_data_dict["inp"],
                text=guidance_data_dict["text"],
                text_lens=guidance_data_dict["text_lens"],
                rand_span_mask=guidance_data_dict["rand_span_mask"],
                real_data=guidance_data_dict.get("real_data", None),
                second_time=guidance_data_dict.get("second_time", None),
            )
        else:
            raise NotImplementedError(
                "Must specify either generator_turn or guidance_turn"
            )

        return loss_dict, log_dict


if __name__ == "__main__":
    from f5_tts.model.utils import get_tokenizer

    bsz = 16

    tokenizer = "pinyin"  # 'pinyin', 'char', or 'custom'
    tokenizer_path = None  # if tokenizer = 'custom', define the path to the tokenizer you want to use (should be vocab.txt)
    dataset_name = "Emilia_ZH_EN"
    if tokenizer == "custom":
        tokenizer_path = tokenizer_path
    else:
        tokenizer_path = dataset_name
    vocab_char_map, vocab_size = get_tokenizer(tokenizer_path, tokenizer)

    real_unet = DiT(
        dim=1024,
        depth=22,
        heads=16,
        ff_mult=2,
        text_dim=512,
        conv_layers=4,
        text_num_embeds=vocab_size,
        mel_dim=100,
    )
    fake_unet = DiT(
        dim=1024,
        depth=22,
        heads=16,
        ff_mult=2,
        text_dim=512,
        conv_layers=4,
        text_num_embeds=vocab_size,
        mel_dim=100,
    )

    guidance = Guidance(
        real_unet,
        fake_unet,
        real_guidance_scale=1.0,
        fake_guidance_scale=0.0,
        use_fp16=True,
        gen_cls_loss=True,
    ).cuda()

    text = ["hello world"] * bsz
    lens = torch.randint(1, 1000, (bsz,)).cuda()
    inp = torch.randn(bsz, lens.max(), 80).cuda()

    batch, seq_len, dtype, device = *inp.shape[:2], inp.dtype, inp.device

    # handle text as string
    if isinstance(text, list):
        if exists(vocab_char_map):
            text = list_str_to_idx(text, vocab_char_map).to(device)
        else:
            text = list_str_to_tensor(text).to(device)
        assert text.shape[0] == batch

    # lens and mask
    if not exists(lens):
        lens = torch.full((batch,), seq_len, device=device)

    mask = lens_to_mask(
        lens, length=seq_len
    )  # useless here, as collate_fn will pad to max length in batch
    frac_lengths_mask = (0.7, 1.0)

    # get a random span to mask out for training conditionally
    frac_lengths = (
        torch.zeros((batch,), device=device).float().uniform_(*frac_lengths_mask)
    )
    rand_span_mask = mask_from_frac_lengths(lens, frac_lengths)

    if exists(mask):
        rand_span_mask &= mask

    # Construct data dicts for generator and guidance phases
    # For flow, `real_data` can just be the ground truth if available; here we simulate it
    real_data_dict = {
        "inp": torch.zeros_like(inp),  # simulating real data
    }

    generator_data_dict = {
        "inp": inp,
        "text": text,
        "rand_span_mask": rand_span_mask,
        "real_data": real_data_dict,
    }

    guidance_data_dict = {
        "inp": inp,
        "text": text,
        "rand_span_mask": rand_span_mask,
        "real_data": real_data_dict,
    }

    # Generator forward pass
    loss_dict, log_dict = guidance(
        generator_turn=True, generator_data_dict=generator_data_dict
    )
    print("Generator turn losses:", loss_dict)

    # Guidance forward pass
    loss_dict, log_dict = guidance(
        guidance_turn=True, guidance_data_dict=guidance_data_dict
    )
    print("Guidance turn losses:", loss_dict)