File size: 29,976 Bytes
597cecf
39d2f14
597cecf
39d2f14
597cecf
39d2f14
 
597cecf
39d2f14
 
 
 
597cecf
 
 
39d2f14
 
 
 
 
597cecf
39d2f14
 
 
 
 
 
 
 
 
 
 
 
 
597cecf
39d2f14
 
597cecf
39d2f14
 
597cecf
39d2f14
 
597cecf
39d2f14
 
 
 
 
 
 
 
597cecf
39d2f14
 
597cecf
 
 
 
 
39d2f14
597cecf
 
39d2f14
 
597cecf
 
 
 
39d2f14
 
 
 
 
597cecf
39d2f14
 
 
 
 
 
 
 
 
 
 
 
 
 
 
597cecf
39d2f14
 
 
 
 
 
 
 
 
 
 
 
 
 
597cecf
 
 
 
 
 
 
39d2f14
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
597cecf
39d2f14
 
 
 
597cecf
39d2f14
 
 
 
 
597cecf
39d2f14
 
 
597cecf
 
 
39d2f14
 
597cecf
39d2f14
 
 
 
 
 
 
 
597cecf
39d2f14
 
 
 
 
597cecf
39d2f14
 
 
 
 
 
597cecf
39d2f14
 
 
 
 
 
597cecf
39d2f14
 
597cecf
39d2f14
597cecf
 
 
39d2f14
597cecf
 
 
 
39d2f14
 
597cecf
39d2f14
597cecf
 
 
 
 
39d2f14
 
 
 
597cecf
39d2f14
 
 
 
 
 
597cecf
 
 
 
 
 
39d2f14
 
 
 
 
597cecf
 
 
39d2f14
597cecf
 
 
 
39d2f14
 
 
 
 
597cecf
 
 
 
39d2f14
 
 
 
 
 
 
 
 
 
 
 
597cecf
39d2f14
597cecf
 
 
39d2f14
 
 
597cecf
 
 
 
 
 
 
39d2f14
 
 
597cecf
 
 
39d2f14
597cecf
39d2f14
 
597cecf
 
39d2f14
597cecf
39d2f14
 
 
 
 
 
 
 
 
597cecf
39d2f14
 
597cecf
39d2f14
 
597cecf
39d2f14
 
 
 
 
597cecf
39d2f14
 
597cecf
39d2f14
 
 
 
 
 
597cecf
39d2f14
 
 
 
 
 
 
 
 
 
 
 
 
597cecf
 
39d2f14
 
 
 
597cecf
 
 
 
39d2f14
597cecf
 
 
 
39d2f14
597cecf
 
 
 
 
 
39d2f14
 
597cecf
 
 
39d2f14
 
597cecf
 
 
39d2f14
 
 
597cecf
 
 
39d2f14
 
 
 
 
 
 
 
 
 
597cecf
 
 
 
39d2f14
 
597cecf
39d2f14
 
597cecf
 
 
 
 
 
 
 
 
39d2f14
597cecf
 
 
 
 
 
 
 
39d2f14
 
 
 
 
597cecf
 
 
 
 
39d2f14
 
 
 
 
 
597cecf
39d2f14
 
 
 
 
 
 
 
597cecf
 
 
 
39d2f14
597cecf
 
39d2f14
 
 
 
597cecf
39d2f14
 
597cecf
 
39d2f14
 
 
 
 
 
 
597cecf
39d2f14
597cecf
39d2f14
 
 
597cecf
 
 
39d2f14
 
 
 
 
 
 
 
 
597cecf
39d2f14
 
 
 
 
 
597cecf
 
 
39d2f14
 
 
 
597cecf
39d2f14
597cecf
 
 
 
 
 
 
 
 
 
39d2f14
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
597cecf
39d2f14
 
597cecf
39d2f14
597cecf
 
 
 
39d2f14
597cecf
39d2f14
 
 
597cecf
39d2f14
 
597cecf
39d2f14
 
 
 
 
597cecf
 
 
 
 
39d2f14
 
 
 
 
 
597cecf
39d2f14
597cecf
39d2f14
 
 
 
597cecf
 
 
 
39d2f14
 
 
597cecf
 
39d2f14
 
597cecf
39d2f14
 
 
 
 
 
597cecf
39d2f14
597cecf
39d2f14
597cecf
39d2f14
597cecf
39d2f14
 
 
 
 
597cecf
39d2f14
 
 
597cecf
39d2f14
 
 
 
 
 
597cecf
39d2f14
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
597cecf
39d2f14
 
597cecf
 
 
 
39d2f14
 
597cecf
39d2f14
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
597cecf
39d2f14
 
 
 
 
597cecf
 
 
 
 
39d2f14
 
 
 
 
 
 
 
 
 
 
 
597cecf
 
 
 
 
39d2f14
 
 
 
 
 
597cecf
39d2f14
 
 
597cecf
 
 
 
39d2f14
 
 
 
 
597cecf
 
 
39d2f14
 
 
 
 
597cecf
 
 
 
 
 
 
 
39d2f14
597cecf
 
 
39d2f14
597cecf
39d2f14
597cecf
39d2f14
 
 
597cecf
39d2f14
 
597cecf
39d2f14
 
597cecf
39d2f14
 
 
 
597cecf
39d2f14
 
 
 
 
 
597cecf
39d2f14
 
 
 
597cecf
39d2f14
597cecf
39d2f14
597cecf
 
 
39d2f14
 
597cecf
 
 
 
 
 
 
 
39d2f14
597cecf
 
 
 
39d2f14
 
 
 
597cecf
39d2f14
597cecf
39d2f14
 
597cecf
 
 
 
 
 
 
 
 
 
39d2f14
 
597cecf
39d2f14
597cecf
39d2f14
 
 
597cecf
39d2f14
597cecf
39d2f14
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
import copy
import gc
import io
import json
import os
import random
import time
from typing import Any, Callable, Dict, List, Optional, Tuple, Union

import torch
import torch.nn as nn
import torch.nn.functional as F
import wandb
from accelerate import Accelerator
from accelerate.utils import DistributedDataParallelKwargs
from torch.optim import AdamW
from torch.optim.lr_scheduler import LinearLR, SequentialLR
from torch.utils.data import DataLoader, Dataset, SequentialSampler, Subset
from tqdm import tqdm

from f5_tts.model.dataset import DynamicBatchSampler, collate_fn
from f5_tts.model.utils import list_str_to_idx

# torch.autograd.set_detect_anomaly(True)
# os.environ['HYDRA_FULL_ERROR'] = 'True'


def safe_sample(logits, temperature=1.0):
    """
    logits: Tensor of shape (B, n_class)
    temperature: Sampling temperature (higher => more random)
    """
    # Apply temperature scaling
    scaled_logits = logits / temperature

    # Compute categorical distribution
    probs = F.softmax(scaled_logits, dim=-1)

    # Sample from the distribution once per batch element
    samples = torch.multinomial(probs, num_samples=1)  # (B, 1)

    # Convert to one-hot encoding
    one_hot_samples = torch.zeros_like(probs).scatter_(1, samples, 1)

    return one_hot_samples


class GRPODurationTrainer:
    """
    Trainer class that implements GRPO (Generative Reinforcement Learning from Preference Optimization)
    for a duration predictor in text-to-speech synthesis.
    """

    def __init__(
        self,
        model,  # Duration predictor model
        inference_fn,  # Function to generate speech
        reward_fn,  # Function to compute rewards from generated speech
        vocab_size: int,  # Size of the vocabulary
        vocab_char_map: dict,  # Mapping from characters to token IDs
        # Duration model parameters
        n_class: int = 301,  # Number of duration classes
        n_frame_per_class: int = 10,  # Number of frames per class
        gumbel_tau: int = 0.7,
        # GRPO parameters
        beta: float = 0.04,  # KL regularization weight
        clip_param: float = 0.2,  # PPO clip parameter
        num_pre_samples: int = 8,  # Number of samples per prompt
        compute_gen_logps: bool = True,  # Whether to compute generation log probabilities
        # Training parameters
        learning_rate: float = 5e-6,
        num_warmup_updates: int = 10000,
        save_per_updates: int = 10000,
        checkpoint_path: Optional[str] = None,
        all_steps: int = 100000,  # Total training steps
        # Batch parameters
        batch_size: int = 8,
        batch_size_type: str = "sample",
        max_samples: int = 16,
        grad_accumulation_steps: int = 2,
        max_grad_norm: float = 1.0,
        # Logging parameters
        logger: Optional[str] = "wandb",
        wandb_project: str = "tts-duration-grpo",
        wandb_run_name: str = "grpo_run",
        wandb_resume_id: Optional[str] = None,
        accelerate_kwargs: dict = dict(),
    ):
        # Initialize accelerator for distributed training
        ddp_kwargs = DistributedDataParallelKwargs(find_unused_parameters=False)

        if logger == "wandb" and not wandb.api.api_key:
            logger = None
        print(f"Using logger: {logger}")

        self.accelerator = Accelerator(
            log_with=logger if logger == "wandb" else None,
            kwargs_handlers=[ddp_kwargs],
            gradient_accumulation_steps=grad_accumulation_steps,
            **accelerate_kwargs,
        )

        self.logger = logger
        if self.logger == "wandb":
            if wandb_resume_id:
                init_kwargs = {
                    "wandb": {
                        "resume": "allow",
                        "name": wandb_run_name,
                        "id": wandb_resume_id,
                    }
                }
            else:
                init_kwargs = {"wandb": {"resume": "allow", "name": wandb_run_name}}

            self.accelerator.init_trackers(
                project_name=wandb_project,
                init_kwargs=init_kwargs,
                config={
                    "learning_rate": learning_rate,
                    "num_warmup_updates": num_warmup_updates,
                    "batch_size": batch_size,
                    "beta": beta,
                    "clip_param": clip_param,
                    "num_pre_samples": num_pre_samples,
                    "n_class": n_class,
                    "n_frame_per_class": n_frame_per_class,
                    "all_steps": all_steps,
                    "grad_accumulation_steps": grad_accumulation_steps,
                    "max_grad_norm": max_grad_norm,
                    "gpus": self.accelerator.num_processes,
                },
            )
        elif self.logger == "tensorboard":
            from torch.utils.tensorboard import SummaryWriter

            self.writer = SummaryWriter(log_dir=f"runs/{wandb_run_name}")

        # Store model, inference function, and reward function
        self.model = model

        # Create reference model (frozen clone of the initial model)
        self.ref_model = copy.deepcopy(model)
        for param in self.ref_model.parameters():
            param.requires_grad = False
        self.ref_model.eval()

        # prepare inference_fn
        self.inference_fn = inference_fn
        self.inference_fn.scale = self.inference_fn.scale.to(self.accelerator.device)
        self.inference_fn.tts_model = self.inference_fn.tts_model.to(
            self.accelerator.device
        )
        # prepare reward_fn
        self.reward_fn = reward_fn

        # Store vocabulary and mapping
        self.vocab_size = vocab_size
        self.vocab_char_map = vocab_char_map

        # Store duration model parameters
        self.n_class = n_class
        self.n_frame_per_class = n_frame_per_class
        self.gumbel_tau = gumbel_tau

        # Store GRPO parameters
        self.beta = beta
        self.clip_param = clip_param
        self.num_pre_samples = num_pre_samples
        self.compute_gen_logps = compute_gen_logps

        # Store training parameters
        self.learning_rate = learning_rate
        self.num_warmup_updates: int = num_warmup_updates
        self.save_per_updates = save_per_updates
        self.checkpoint_path = checkpoint_path or f"ckpts/{wandb_run_name}"
        self.all_steps = all_steps

        # Store batch parameters
        self.batch_size = batch_size
        self.batch_size_type = batch_size_type
        self.max_samples = max_samples
        self.grad_accumulation_steps = grad_accumulation_steps
        self.max_grad_norm = max_grad_norm

        # Initialize optimizer
        self.optimizer = AdamW(model.parameters(), lr=learning_rate)

        # Prepare model and optimizer with accelerator
        self.model, self.optimizer = self.accelerator.prepare(
            self.model, self.optimizer
        )
        self.ref_model = self.accelerator.prepare(self.ref_model)
        self.reward_fn, self.inference_fn = self.accelerator.prepare(
            self.reward_fn, self.inference_fn
        )

        # GRPO batch queue
        self.batch_queue = []

        # Store distributed rank
        self.rank = (
            torch.distributed.get_rank() if torch.distributed.is_initialized() else 0
        )

        self.device = f"cuda:{self.rank}"

    @property
    def is_main(self):
        return self.accelerator.is_main_process

    def save_checkpoint(self, step, last=False):
        """Save model and optimizer state"""
        self.accelerator.wait_for_everyone()
        if self.is_main:
            checkpoint = dict(
                model_state_dict=self.accelerator.unwrap_model(self.model).state_dict(),
                optimizer_state_dict=self.accelerator.unwrap_model(
                    self.optimizer
                ).state_dict(),
                scheduler_state_dict=(
                    self.scheduler.state_dict() if hasattr(self, "scheduler") else None
                ),
                step=step,
            )
            if not os.path.exists(self.checkpoint_path):
                os.makedirs(self.checkpoint_path)
            if last:
                self.accelerator.save(
                    checkpoint, f"{self.checkpoint_path}/model_last.pt"
                )
            else:
                self.accelerator.save(
                    checkpoint, f"{self.checkpoint_path}/model_{step}.pt"
                )

    def load_checkpoint(self):
        """Load latest checkpoint if available"""
        if (
            not self.checkpoint_path
            or not os.path.exists(self.checkpoint_path)
            or not any(
                filename.endswith(".pt")
                for filename in os.listdir(self.checkpoint_path)
            )
        ):
            return 0

        self.accelerator.wait_for_everyone()
        if "model_last.pt" in os.listdir(self.checkpoint_path):
            latest_checkpoint = "model_last.pt"
        else:
            latest_checkpoint = sorted(
                [f for f in os.listdir(self.checkpoint_path) if f.endswith(".pt")],
                key=lambda x: int("".join(filter(str.isdigit, x))),
            )[-1]

        print(f"Loading checkpoint: {latest_checkpoint}")
        checkpoint = torch.load(
            f"{self.checkpoint_path}/{latest_checkpoint}",
            weights_only=True,
            map_location="cpu",
        )

        if "step" in checkpoint:
            self.accelerator.unwrap_model(self.model).load_state_dict(
                checkpoint["model_state_dict"]
            )
            self.accelerator.unwrap_model(self.optimizer).load_state_dict(
                checkpoint["optimizer_state_dict"]
            )
            if hasattr(self, "scheduler") and checkpoint["scheduler_state_dict"]:
                self.scheduler.load_state_dict(checkpoint["scheduler_state_dict"])
            step = checkpoint["step"]
        else:
            self.accelerator.unwrap_model(self.model).load_state_dict(
                checkpoint["model_state_dict"]
            )
            step = 0

        del checkpoint
        gc.collect()

        print(f"Successfully loaded checkpoint at step {step}")
        return step

    @torch.no_grad()
    def get_ref_logps(self, text_ids, mel, sampled_classes):
        """
        Get log probabilities from the reference model for the sampled classes
        """
        B = text_ids.shape[0]
        K = self.num_pre_samples
        with torch.no_grad():
            ref_logits = self.ref_model(text_ids=text_ids, mel=mel)[:, -1, :]
            ref_logits = ref_logits.unsqueeze(1).repeat(1, K, 1).view(B * K, -1)
            ref_log_probs = F.log_softmax(ref_logits, dim=-1)
            ref_logps = torch.gather(
                ref_log_probs, dim=-1, index=sampled_classes.unsqueeze(-1)
            ).squeeze(-1)
        return ref_logps

    @torch.no_grad()
    def generate_duration_samples(self, batch_inputs):
        """
        Generate multiple duration predictions from the model for each input
        and evaluate them using the inference function and reward model

        Args:
            batch_inputs: Dictionary with text, prompt audio, etc.

        Returns:
            Dictionary with duration samples, rewards, and reference logits
        """

        if self.rank == 0:
            print("Generating duration samples...")

        # all_logits = []
        all_text_ids = []
        all_mels = []
        all_sampled_classes = []
        all_durations = []
        all_rewards = []
        all_gen_logps = []

        all_ctc_loss = []
        all_sv_loss = []

        # Fetch batch inputs
        # prompt_mel = batch_inputs['mel'].permute(0, 2, 1).to(self.device)
        prompt_mel = batch_inputs["mel"].permute(0, 2, 1)  # (B, T, 100)
        prompt_text = batch_inputs["text"]

        batch_size = prompt_mel.shape[0]

        # Shift text to unpair 'mel' and 'text'; The shifted text will be synthesized
        target_text = batch_inputs["target_text"]
        target_text_lengths = torch.LongTensor([len(t) for t in target_text]).to(
            prompt_mel.device
        )
        try:
            full_text = [
                prompt + [" "] + target
                for prompt, target in zip(prompt_text, target_text)
            ]
        except:
            target_text = [batch_inputs["text"][-1]] + batch_inputs["text"][:-1]
            target_text_lengths = batch_inputs["text_lengths"].clone().roll(1, 0)
            full_text = [
                prompt + [" "] + target
                for prompt, target in zip(prompt_text, target_text)
            ]

        # Goes to reward model
        target_text_ids = list_str_to_idx(target_text, self.vocab_char_map).to(
            self.accelerator.device
        )  # to device, the dataloader only gives list

        # Goes to duration model and TTS
        full_text_ids = list_str_to_idx(full_text, self.vocab_char_map).to(
            self.accelerator.device
        )

        # Deepcopy to separate text_ids for SLP and TTS
        slp_text_ids = full_text_ids.detach().clone()
        slp_text_ids = slp_text_ids.masked_fill(
            slp_text_ids == -1, self.vocab_size
        )  # (B, L)

        # Pre-compute duration logits
        K = self.num_pre_samples
        B, T, _ = prompt_mel.shape
        _, L = slp_text_ids.shape
        # prompt_mel_k_repeats = prompt_mel.unsqueeze(1).repeat(1, K, 1, 1)  # (B, K, T, 100)
        # slp_text_ids_k_repeats = slp_text_ids.unsqueeze(1).repeat(1, K, 1)  # (B, K, L)

        # Run model once for B inputs
        old_logits = self.model(
            text_ids=slp_text_ids, mel=prompt_mel  # (B, L)  # (B, T, 100)
        )[
            :, -1, :
        ]  # (B, n_class)

        # Repeat each result K times along batch dimension
        old_logits = old_logits.unsqueeze(1).repeat(1, K, 1)  # (B, K, n_class)
        # logits_nograd = logits_grad.detach().clone().view(B, K, -1) # (B, K, n_class)

        for (
            _full_text_ids,
            _target_text_ids,
            _target_text_lengths,
            _prompt_mel,
            _old_logits,
        ) in zip(
            full_text_ids, target_text_ids, target_text_lengths, prompt_mel, old_logits
        ):

            duration_sample = F.gumbel_softmax(
                _old_logits, tau=self.gumbel_tau, hard=True, dim=-1
            )
            duration2frames = (
                torch.arange(self.n_class).float().to(self.accelerator.device)
                * self.n_frame_per_class
            )
            est_frames = (duration_sample * duration2frames).sum(-1)  # (K, )

            # Compute log probabilities of the samples
            sampled_classes = duration_sample.argmax(dim=-1)
            log_probs = F.log_softmax(_old_logits, dim=-1)
            gen_logps = torch.gather(
                log_probs, dim=-1, index=sampled_classes.unsqueeze(-1)
            ).squeeze(
                -1
            )  # Shape: [K, n_class]

            # Generate speech using the sampled durations
            sampled_rewards = []

            for i in range(K):
                cur_duration = est_frames[i]
                if cur_duration == 0:
                    cur_duration = cur_duration + 50  # prevent 0 duration
                infer_full_text_ids = _full_text_ids.unsqueeze(0)
                infer_prompt_mel = _prompt_mel.unsqueeze(0)
                cur_duration = cur_duration.unsqueeze(0)
                infer_target_text_ids = _target_text_ids.unsqueeze(0)
                infer_target_text_lengths = _target_text_lengths.unsqueeze(0)
                with torch.inference_mode():
                    try:
                        _est_mel = self.inference_fn(
                            full_text_ids=infer_full_text_ids,
                            prompt_mel=infer_prompt_mel,
                            target_duration=cur_duration,
                            teacher_steps=0,
                        )
                        _est_mel = _est_mel.permute(0, 2, 1)  # (1, T, 100)

                        loss_dict = self.reward_fn(
                            prompt_mel=infer_prompt_mel,
                            est_mel=_est_mel,
                            target_text_id=infer_target_text_ids,
                            target_text_length=infer_target_text_lengths,
                        )
                        # #TODO reweight the loss for reward
                        reward_sim = loss_dict["loss_sim"]  # 0 to 1
                        reward_ctc = loss_dict["loss_ctc"]
                        reward = -(reward_ctc + reward_sim * 3)
                        all_ctc_loss.append(reward_ctc)
                        all_sv_loss.append(reward_sim)
                    except Exception as e:
                        if self.rank == 0:
                            print(f"Error in speech synthesis: {e}")
                        reward = torch.tensor(-1.0).to(cur_duration.device)

                    sampled_rewards.append(reward)
                    # list with length of K
            sampled_rewards = torch.stack(sampled_rewards)  # (K, )
            # Normalize rewards
            if (sampled_rewards.max() - sampled_rewards.min()).item() > 1e-6:
                sampled_rewards = (sampled_rewards - sampled_rewards.mean()) / (
                    sampled_rewards.std() + 1e-8
                )

            # Store all data
            # all_logits.append(duration_logits)
            # all_text_ids.append(duration_input_expanded["text_ids"])
            # all_mels.append(duration_input_expanded["mel"])
            all_sampled_classes.append(sampled_classes)
            all_durations.append(est_frames)
            all_gen_logps.append(gen_logps)
            all_rewards.extend(sampled_rewards)  # list with length of B*K

        # Concatenate all data
        # logits = torch.cat(all_logits, dim=0)
        # text_ids = torch.cat(all_text_ids, dim=0)
        # mels = torch.cat(all_mels, dim=0)
        sampled_classes = torch.cat(all_sampled_classes, dim=0)
        durations = torch.cat(all_durations, dim=0)
        rewards = torch.stack(
            all_rewards
        )  # use stack to keep the same device of elements
        gen_logps = torch.cat(all_gen_logps, dim=0)

        ctc_losses = torch.stack(all_ctc_loss)
        sv_losses = torch.stack(all_sv_loss)

        if self.is_main:
            self.accelerator.log(
                {
                    "ctc_loss": ctc_losses.mean().item(),
                    "sv_loss": sv_losses.mean().item(),
                    "reward": rewards.mean().item(),
                    "reward_min": rewards.min().item(),
                    "reward_max": rewards.max().item(),
                },
                step=self.global_step,
            )

        # # Normalize rewards
        # if (rewards.max() - rewards.min()).item() > 1e-6:
        #     rewards = (rewards - rewards.mean()) / (rewards.std() + 1e-8)

        ref_logps = self.get_ref_logps(slp_text_ids, prompt_mel, sampled_classes)

        # Create batch dict similar to Qwen2.5 implementation
        batch_outputs = {
            # "logits": logits_grad,
            "text_ids": slp_text_ids,
            "prompt_mel": prompt_mel,
            "rewards": rewards,
            "refs": ref_logps,
            "sampled_classes": sampled_classes,
            "durations": durations,
        }

        if self.compute_gen_logps:
            batch_outputs["gen_logps"] = gen_logps

        if self.rank == 0:
            print(
                f"Generated {len(rewards)} samples with reward min/mean/max: {rewards.min().item():.4f}/{rewards.mean().item():.4f}/{rewards.max().item():.4f}"
            )

        return batch_outputs

    def GRPO_step(self, batch):
        """
        Perform a GRPO update step

        Args:
            batch: Dictionary with inputs, rewards, reference logits, etc.

        Returns:
            Loss value
        """
        # Extract batch data
        # NOTE: why .unsqueeze(1) ???
        rewards = batch["rewards"]  # .unsqueeze(1)
        ref_logps = batch["refs"]  # (B)
        sampled_classes = batch["sampled_classes"]  # (B)
        prompt_mel = batch["prompt_mel"]
        text_ids = batch["text_ids"]

        # Forward pass to get current model logits
        K = self.num_pre_samples
        B, T, _ = prompt_mel.shape
        _, L = text_ids.shape
        cur_logits = self.model(
            text_ids=text_ids, mel=prompt_mel  # (B, L)  # (B, T, 100)
        )[:, -1, :]
        cur_logits = cur_logits.unsqueeze(1).repeat(1, K, 1).view(B * K, -1)

        # Compute current log probabilities for sampled actions
        log_probs = F.log_softmax(cur_logits, dim=-1)
        cur_logps = torch.gather(
            log_probs, dim=-1, index=sampled_classes.unsqueeze(-1)
        ).squeeze(
            -1
        )  # (B)

        # KL divergence computation (same as in Qwen2.5 code)
        # KL = exp(ref - cur) - (ref - cur) - 1
        kl_div = torch.exp(ref_logps - cur_logps) - (ref_logps - cur_logps) - 1  # (B)

        # Compute probability ratio for PPO
        if "gen_logps" in batch:
            gen_logps = batch["gen_logps"]
            ratio = torch.exp(cur_logps - gen_logps)
            clipped_ratio = torch.clamp(ratio, 1 - self.clip_param, 1 + self.clip_param)
            loss = torch.min(ratio * rewards, clipped_ratio * rewards)
        else:
            # Simplification if gen_logps not available
            loss = torch.exp(cur_logps - cur_logps.detach()) * rewards

        # Final GRPO loss with KL regularization
        loss = -(loss - self.beta * kl_div)  # (B)
        loss = loss.mean()

        return loss

    def get_batch(self):
        """Get a batch from the queue or return None if empty"""
        if not self.batch_queue:
            return None
        return self.batch_queue.pop(0)

    def generate_mode(self, num_batches=5):
        """
        Generate samples and add them to the batch queue

        Args:
            dataset: Dataset to sample from
            num_batches: Number of batches to generate
        """
        if self.rank == 0:
            print("Entering generate mode...")

        tic = time.time()
        for _ in range(num_batches):
            try:
                batch_inputs = next(self.train_iterator)
            except StopIteration:
                self.train_iterator = iter(self.train_dataloader)
                batch_inputs = next(self.train_iterator)

            # Generate samples and compute rewards
            batch_outputs = self.generate_duration_samples(batch_inputs)
            # Check if batch has sufficient reward diversity
            rewards = batch_outputs["rewards"]
            if (rewards.max() - rewards.min()).item() < 0.01:
                if self.rank == 0:
                    print("Skipping batch with low reward diversity")
                continue
            # Add batch to queue
            self.batch_queue.append(batch_outputs)

        if self.rank == 0:
            print(f"Exiting generate mode: {time.time() - tic:.3f}s")

    def train(
        self, train_dataset, valid_dataset=None, num_workers=64, resumable_with_seed=666
    ):
        """
        Train the model using GRPO

        Args:
            train_dataset: Training dataset
            valid_dataset: Validation dataset (optional)
            num_workers: Number of workers for data loading
        """

        # Create training dataloader using the appropriate batching strategy
        if self.batch_size_type == "sample":
            self.train_dataloader = DataLoader(
                train_dataset,
                collate_fn=collate_fn,
                num_workers=num_workers,
                pin_memory=True,
                persistent_workers=True,
                batch_size=self.batch_size,
                shuffle=True,
                generator=generator,
            )
            # Create validation dataloader (always sequential, no shuffling)
            self.valid_dataloader = DataLoader(
                valid_dataset,
                collate_fn=collate_fn,
                num_workers=num_workers,
                pin_memory=True,
                batch_size=self.batch_size,
                shuffle=False,
            )

            self.train_iterator = iter(self.train_dataloader)
            self.valid_iterator = iter(self.valid_dataloader)

        elif self.batch_size_type == "frame":
            self.accelerator.even_batches = False

            sampler = SequentialSampler(train_dataset)
            batch_sampler = DynamicBatchSampler(
                sampler,
                self.batch_size,
                max_samples=self.max_samples,
                random_seed=resumable_with_seed,
                drop_last=False,
            )
            self.train_dataloader = DataLoader(
                train_dataset,
                collate_fn=collate_fn,
                num_workers=num_workers,
                pin_memory=True,
                persistent_workers=True,
                batch_sampler=batch_sampler,
            )

            sampler = SequentialSampler(valid_dataset)
            batch_sampler = DynamicBatchSampler(
                sampler,
                self.batch_size,
                max_samples=self.max_samples,
                random_seed=resumable_with_seed,
                drop_last=False,
            )
            # Create validation dataloader (always sequential, no shuffling)
            self.valid_dataloader = DataLoader(
                valid_dataset,
                collate_fn=collate_fn,
                num_workers=num_workers,
                pin_memory=True,
                persistent_workers=True,
                batch_sampler=batch_sampler,
            )

            self.train_dataloader, self.valid_dataloader = self.accelerator.prepare(
                self.train_dataloader, self.valid_dataloader
            )

            self.train_iterator = iter(self.train_dataloader)
            self.valid_iterator = iter(self.valid_dataloader)

        else:
            raise ValueError(
                f"batch_size_type must be either 'sample' or 'frame', but received {self.batch_size_type}"
            )

        # Setup schedulers
        warmup_steps = self.num_warmup_updates * self.accelerator.num_processes
        total_steps = self.all_steps
        decay_steps = total_steps - warmup_steps

        warmup_scheduler = LinearLR(
            self.optimizer, start_factor=1e-8, end_factor=1.0, total_iters=warmup_steps
        )
        decay_scheduler = LinearLR(
            self.optimizer, start_factor=1.0, end_factor=1e-8, total_iters=decay_steps
        )

        self.scheduler = SequentialLR(
            self.optimizer,
            schedulers=[warmup_scheduler, decay_scheduler],
            milestones=[warmup_steps],
        )

        self.scheduler = self.accelerator.prepare(self.scheduler)

        # Load checkpoint if available
        start_step = self.load_checkpoint()
        self.global_step = start_step

        # Generate initial batches
        self.generate_mode()

        # Training loop
        progress = range(1, self.all_steps + 1)

        # Skip steps that are already done
        progress = [step for step in progress if step > start_step]
        if self.is_main:
            progress = tqdm(progress, desc="Training", unit="step")

        for step in progress:
            # Get batch from queue or generate more
            batch = self.get_batch()
            while batch is None:
                self.generate_mode()
                batch = self.get_batch()

            # GRPO update
            with self.accelerator.accumulate(self.model):
                loss = self.GRPO_step(batch)
                # for param in self.model.parameters():
                #     custom_loss = loss + 0 * param.sum()
                self.accelerator.backward(loss)

                if self.max_grad_norm > 0 and self.accelerator.sync_gradients:
                    total_norm = self.accelerator.clip_grad_norm_(
                        self.model.parameters(), self.max_grad_norm
                    )
                else:
                    total_norm = torch.norm(
                        torch.stack(
                            [
                                torch.norm(p.grad.detach(), 2)
                                for p in self.model.parameters()
                                if p.grad is not None
                            ]
                        ),
                        2,
                    )

                self.accelerator.log(
                    {"grad_norm": total_norm.item()}, step=self.global_step
                )

                self.optimizer.step()
                self.scheduler.step()
                self.optimizer.zero_grad()

            self.global_step += 1

            # Log metrics
            if self.is_main:
                self.accelerator.log(
                    {
                        "loss": loss.item(),
                        "lr": self.scheduler.get_last_lr()[0],
                        # "avg_reward": batch["rewards"].mean().item(),
                        # "max_reward": batch["rewards"].max().item(),
                        # "min_reward": batch["rewards"].min().item(),
                    },
                    step=self.global_step,
                )
                progress.set_postfix(
                    loss=f"{loss.item():.4f}",
                    lr=f"{self.scheduler.get_last_lr()[0]:.8f}",
                )

            # Save checkpoint
            if self.global_step % self.save_per_updates == 0:
                self.save_checkpoint(self.global_step)

                # Optional validation logic could be added here

        # Save final checkpoint
        self.save_checkpoint(self.global_step, last=True)
        self.accelerator.end_training()