File size: 7,130 Bytes
39d2f14
 
 
 
597cecf
 
39d2f14
 
 
 
 
 
597cecf
 
 
39d2f14
 
 
 
 
597cecf
 
 
 
 
 
39d2f14
 
 
 
 
 
 
 
 
 
597cecf
 
 
 
 
 
 
39d2f14
 
 
 
 
597cecf
39d2f14
 
 
597cecf
39d2f14
597cecf
 
 
 
 
 
 
 
 
39d2f14
597cecf
39d2f14
 
 
597cecf
 
 
39d2f14
597cecf
 
 
 
 
 
 
 
 
39d2f14
597cecf
 
 
 
 
 
 
 
 
 
39d2f14
597cecf
 
 
 
39d2f14
 
 
 
 
 
 
 
 
 
 
 
 
597cecf
39d2f14
 
 
 
597cecf
 
 
39d2f14
 
 
 
 
 
 
 
 
 
 
 
597cecf
39d2f14
 
597cecf
39d2f14
 
597cecf
39d2f14
 
 
 
 
 
 
 
597cecf
 
 
 
 
 
 
 
 
 
 
39d2f14
 
 
 
 
 
597cecf
39d2f14
 
 
597cecf
39d2f14
 
 
 
 
 
 
 
 
 
 
 
597cecf
 
 
39d2f14
597cecf
39d2f14
597cecf
 
 
39d2f14
597cecf
39d2f14
 
 
 
 
 
 
 
 
597cecf
39d2f14
 
 
 
 
597cecf
39d2f14
597cecf
 
39d2f14
 
597cecf
39d2f14
 
 
 
 
 
597cecf
 
 
 
39d2f14
597cecf
 
 
 
 
39d2f14
 
597cecf
39d2f14
 
597cecf
39d2f14
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
# part of the code is borrowed from https://github.com/lawlict/ECAPA-TDNN

from __future__ import annotations

from pathlib import Path

import torch
import torch.nn as nn
import torch.nn.functional as F
import torchaudio.transforms as trans
from torchaudio.models import Conformer

from f5_tts.model.utils import (default, exists, lens_to_mask, list_str_to_idx,
                                list_str_to_tensor, mask_from_frac_lengths)


class ResBlock(nn.Module):
    def __init__(self, hidden_dim, n_conv=3, dropout_p=0.2):
        super().__init__()
        self._n_groups = 8
        self.blocks = nn.ModuleList(
            [
                self._get_conv(hidden_dim, dilation=3**i, dropout_p=dropout_p)
                for i in range(n_conv)
            ]
        )

    def forward(self, x):
        for block in self.blocks:
            res = x
            x = block(x)
            x += res
        return x

    def _get_conv(self, hidden_dim, dilation, dropout_p=0.2):
        layers = [
            nn.Conv1d(
                hidden_dim,
                hidden_dim,
                kernel_size=3,
                padding=dilation,
                dilation=dilation,
            ),
            nn.ReLU(),
            nn.GroupNorm(num_groups=self._n_groups, num_channels=hidden_dim),
            nn.Dropout(p=dropout_p),
            nn.Conv1d(hidden_dim, hidden_dim, kernel_size=3, padding=1, dilation=1),
            nn.ReLU(),
            nn.Dropout(p=dropout_p),
        ]
        return nn.Sequential(*layers)


class ConformerDiscirminator(nn.Module):
    def __init__(
        self,
        input_dim,
        channels=512,
        num_layers=3,
        num_heads=8,
        depthwise_conv_kernel_size=15,
        use_group_norm=True,
    ):
        super().__init__()

        self.input_layer = nn.Conv1d(input_dim, channels, kernel_size=3, padding=1)

        self.resblock1 = nn.Sequential(
            ResBlock(channels), nn.GroupNorm(num_groups=1, num_channels=channels)
        )

        self.resblock2 = nn.Sequential(
            ResBlock(channels), nn.GroupNorm(num_groups=1, num_channels=channels)
        )

        self.conformer1 = Conformer(
            **{
                "input_dim": channels,
                "num_heads": num_heads,
                "ffn_dim": channels * 2,
                "num_layers": 1,
                "depthwise_conv_kernel_size": depthwise_conv_kernel_size // 2,
                "use_group_norm": use_group_norm,
            }
        )

        self.conformer2 = Conformer(
            **{
                "input_dim": channels,
                "num_heads": num_heads,
                "ffn_dim": channels * 2,
                "num_layers": num_layers - 1,
                "depthwise_conv_kernel_size": depthwise_conv_kernel_size,
                "use_group_norm": use_group_norm,
            }
        )

        self.linear = nn.Conv1d(channels, 1, kernel_size=1)

    def forward(self, x):
        # x = torch.stack(x, dim=1).transpose(-1, -2).flatten(start_dim=1, end_dim=2)
        x = torch.cat(x, dim=-1)
        x = x.transpose(1, 2)

        x = self.input_layer(x)

        x = self.resblock1(x)
        x = nn.functional.avg_pool1d(x, 2)
        x = self.resblock2(x)
        x = nn.functional.avg_pool1d(x, 2)

        # Transpose to (B, T, C) for the conformer.
        x = x.transpose(1, 2)
        batch_size, time_steps, _ = x.shape
        # Create a dummy lengths tensor (all sequences are assumed to be full length).
        lengths = torch.full(
            (batch_size,), time_steps, device=x.device, dtype=torch.int64
        )
        # The built-in Conformer returns (output, output_lengths); we discard lengths.

        x, _ = self.conformer1(x, lengths)
        x, _ = self.conformer2(x, lengths)
        # Transpose back to (B, C, T).
        x = x.transpose(1, 2)

        # out = self.bn(self.pooling(out))
        out = self.linear(x).squeeze(1)

        return out


if __name__ == "__main__":
    from f5_tts.model import DiT
    from f5_tts.model.utils import get_tokenizer

    bsz = 2

    tokenizer = "pinyin"  # 'pinyin', 'char', or 'custom'
    tokenizer_path = None  # if tokenizer = 'custom', define the path to the tokenizer you want to use (should be vocab.txt)
    dataset_name = "Emilia_ZH_EN"
    if tokenizer == "custom":
        tokenizer_path = tokenizer_path
    else:
        tokenizer_path = dataset_name
    vocab_char_map, vocab_size = get_tokenizer(tokenizer_path, tokenizer)

    fake_unet = DiT(
        dim=1024,
        depth=22,
        heads=16,
        ff_mult=2,
        text_dim=512,
        conv_layers=4,
        text_num_embeds=vocab_size,
        mel_dim=80,
    )

    fake_unet = fake_unet.cuda()

    text = ["hello world"] * bsz
    lens = torch.randint(1, 1000, (bsz,)).cuda()
    inp = torch.randn(bsz, lens.max(), 80).cuda()

    batch, seq_len, dtype, device = *inp.shape[:2], inp.dtype, inp.device

    batch, seq_len, dtype, device = *inp.shape[:2], inp.dtype, inp.device

    # handle text as string
    if isinstance(text, list):
        if exists(vocab_char_map):
            text = list_str_to_idx(text, vocab_char_map).to(device)
        else:
            text = list_str_to_tensor(text).to(device)
        assert text.shape[0] == batch

    # lens and mask
    if not exists(lens):
        lens = torch.full((batch,), seq_len, device=device)

    mask = lens_to_mask(
        lens, length=seq_len
    )  # useless here, as collate_fn will pad to max length in batch
    frac_lengths_mask = (0.7, 1.0)

    # get a random span to mask out for training conditionally
    frac_lengths = (
        torch.zeros((batch,), device=device).float().uniform_(*frac_lengths_mask)
    )
    rand_span_mask = mask_from_frac_lengths(lens, frac_lengths)

    if exists(mask):
        rand_span_mask &= mask

    # Sample a time
    time = torch.rand((batch,), dtype=dtype, device=device)

    x1 = inp
    x0 = torch.randn_like(x1)
    t = time.unsqueeze(-1).unsqueeze(-1)

    phi = (1 - t) * x0 + t * x1
    flow = x1 - x0
    cond = torch.where(rand_span_mask[..., None], torch.zeros_like(x1), x1)

    layers = fake_unet(
        x=phi,
        cond=cond,
        text=text,
        time=time,
        drop_audio_cond=False,
        drop_text=False,
        classify_mode=True,
    )

    # layers = torch.stack(layers, dim=1).transpose(-1, -2).flatten(start_dim=1, end_dim=2)
    # print(layers.shape)

    from ctcmodel import ConformerCTC

    ctcmodel = ConformerCTC(
        vocab_size=vocab_size, mel_dim=80, num_heads=8, d_hid=512, nlayers=6
    ).cuda()
    real_out, layer = ctcmodel(inp)
    layer = layer[-3:]  # only use the last 3 layers
    layer = [
        F.interpolate(l, mode="nearest", scale_factor=4).transpose(-1, -2)
        for l in layer
    ]
    if layer[0].size(1) < layers[0].size(1):
        layer = [F.pad(l, (0, 0, 0, layers[0].size(1) - l.size(1))) for l in layer]

    layers = layer + layers

    model = ConformerDiscirminator(input_dim=23 * 1024 + 3 * 512, channels=512)

    model = model.cuda()
    print(model)
    out = model(layers)
    print(out.shape)