File size: 6,619 Bytes
39d2f14
 
 
597cecf
 
 
39d2f14
597cecf
 
39d2f14
 
 
 
 
 
597cecf
 
 
 
 
 
39d2f14
 
 
 
 
 
 
 
 
 
597cecf
 
 
 
 
 
 
39d2f14
 
 
 
 
597cecf
39d2f14
 
 
 
 
597cecf
39d2f14
597cecf
39d2f14
597cecf
39d2f14
597cecf
39d2f14
597cecf
 
 
39d2f14
597cecf
 
39d2f14
 
597cecf
 
 
 
 
 
 
 
 
39d2f14
 
 
597cecf
39d2f14
597cecf
 
 
 
 
 
 
 
 
39d2f14
 
 
 
597cecf
39d2f14
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
597cecf
 
 
39d2f14
597cecf
39d2f14
 
 
597cecf
39d2f14
 
 
 
 
 
597cecf
 
 
39d2f14
 
 
 
 
 
 
 
 
597cecf
39d2f14
 
 
 
 
 
 
 
597cecf
 
 
 
 
39d2f14
 
 
597cecf
39d2f14
597cecf
39d2f14
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
597cecf
 
 
 
39d2f14
 
597cecf
 
 
 
39d2f14
597cecf
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
import copy
from pathlib import Path

import torch
from torch import nn
from torchaudio.models import Conformer

from f5_tts.model.utils import (default, exists, lens_to_mask, list_str_to_idx,
                                list_str_to_tensor, mask_from_frac_lengths)


class ResBlock(nn.Module):
    def __init__(self, hidden_dim, n_conv=3, dropout_p=0.2):
        super().__init__()
        self._n_groups = 8
        self.blocks = nn.ModuleList(
            [
                self._get_conv(hidden_dim, dilation=3**i, dropout_p=dropout_p)
                for i in range(n_conv)
            ]
        )

    def forward(self, x):
        for block in self.blocks:
            res = x
            x = block(x)
            x += res
        return x

    def _get_conv(self, hidden_dim, dilation, dropout_p=0.2):
        layers = [
            nn.Conv1d(
                hidden_dim,
                hidden_dim,
                kernel_size=3,
                padding=dilation,
                dilation=dilation,
            ),
            nn.ReLU(),
            nn.GroupNorm(num_groups=self._n_groups, num_channels=hidden_dim),
            nn.Dropout(p=dropout_p),
            nn.Conv1d(hidden_dim, hidden_dim, kernel_size=3, padding=1, dilation=1),
            nn.ReLU(),
            nn.Dropout(p=dropout_p),
        ]
        return nn.Sequential(*layers)


class ConformerCTC(nn.Module):
    def __init__(self, vocab_size, mel_dim=100, num_heads=8, d_hid=512, nlayers=6):
        super().__init__()

        self.mel_proj = nn.Conv1d(mel_dim, d_hid, kernel_size=3, padding=1)

        self.d_hid = d_hid

        self.resblock1 = nn.Sequential(
            ResBlock(d_hid), nn.GroupNorm(num_groups=1, num_channels=d_hid)
        )

        self.resblock2 = nn.Sequential(
            ResBlock(d_hid), nn.GroupNorm(num_groups=1, num_channels=d_hid)
        )

        self.conf_pre = torch.nn.ModuleList(
            [
                Conformer(
                    input_dim=d_hid,
                    num_heads=num_heads,
                    ffn_dim=d_hid * 2,
                    num_layers=1,
                    depthwise_conv_kernel_size=15,
                    use_group_norm=True,
                )
                for _ in range(nlayers // 2)
            ]
        )

        self.conf_after = torch.nn.ModuleList(
            [
                Conformer(
                    input_dim=d_hid,
                    num_heads=num_heads,
                    ffn_dim=d_hid * 2,
                    num_layers=1,
                    depthwise_conv_kernel_size=7,
                    use_group_norm=True,
                )
                for _ in range(nlayers // 2)
            ]
        )

        self.out = nn.Linear(d_hid, 1 + vocab_size)  # 1 for blank

        self.ctc_loss = nn.CTCLoss(blank=vocab_size, zero_infinity=True).cuda()

    def forward(self, latent, text=None, text_lens=None):
        layers = []

        x = self.mel_proj(latent.transpose(-1, -2)).transpose(-1, -2)

        x = x.transpose(1, 2)
        layers.append(nn.functional.avg_pool1d(x, 4))
        # x = x.transpose(1, 2)

        x = self.resblock1(x)
        x = nn.functional.avg_pool1d(x, 2)
        layers.append(nn.functional.avg_pool1d(x, 2))
        x = self.resblock2(x)
        x = nn.functional.avg_pool1d(x, 2)
        layers.append(x)

        x = x.transpose(1, 2)

        batch_size, time_steps, _ = x.shape
        # Create a dummy lengths tensor (all sequences are assumed to be full length).
        input_lengths = torch.full(
            (batch_size,), time_steps, device=x.device, dtype=torch.int64
        )

        for layer in self.conf_pre:
            x, _ = layer(x, input_lengths)
            layers.append(x.transpose(1, 2))

        for layer in self.conf_after:
            x, _ = layer(x, input_lengths)
            layers.append(x.transpose(1, 2))

        x = self.out(x)

        if text_lens is not None and text is not None:
            loss = self.ctc_loss(
                x.log_softmax(dim=2).transpose(0, 1), text, input_lengths, text_lens
            )
            return x, layers, loss
        else:
            return x, layers


if __name__ == "__main__":
    from f5_tts.model.utils import get_tokenizer

    bsz = 16

    tokenizer = "pinyin"  # 'pinyin', 'char', or 'custom'
    tokenizer_path = None  # if tokenizer = 'custom', define the path to the tokenizer you want to use (should be vocab.txt)
    dataset_name = "Emilia_ZH_EN"
    if tokenizer == "custom":
        tokenizer_path = tokenizer_path
    else:
        tokenizer_path = dataset_name
    vocab_char_map, vocab_size = get_tokenizer(tokenizer_path, tokenizer)

    model = ConformerCTC(
        vocab_size, mel_dim=80, num_heads=8, d_hid=512, nlayers=6
    ).cuda()

    text = ["hello world"] * bsz
    lens = torch.randint(1, 1000, (bsz,)).cuda()
    inp = torch.randn(bsz, lens.max(), 80).cuda()

    batch, seq_len, dtype, device = *inp.shape[:2], inp.dtype, inp.device

    # handle text as string
    text_lens = torch.tensor([len(t) for t in text], device=device)
    if isinstance(text, list):
        if exists(vocab_char_map):
            text = list_str_to_idx(text, vocab_char_map).to(device)
        else:
            text = list_str_to_tensor(text).to(device)
        assert text.shape[0] == batch

    # lens and mask
    if not exists(lens):
        lens = torch.full((batch,), seq_len, device=device)

    out, layers, loss = model(inp, text_lens)

    print(out.shape)
    print(out)
    print(len(layers))
    print(torch.stack(layers, axis=1).shape)
    print(loss)

    probs = out.softmax(dim=2)  # Convert logits to probabilities

    # Greedy decoding
    best_path = torch.argmax(probs, dim=2)

    decoded_sequences = []
    blank_idx = vocab_size

    char_vocab_map = list(vocab_char_map.keys())

    for batch in best_path:
        decoded_sequence = []
        previous_token = None

        for token in batch:
            if token != previous_token:  # Collapse repeated tokens
                if token != blank_idx:  # Ignore blank tokens
                    decoded_sequence.append(token.item())
            previous_token = token

        decoded_sequences.append(decoded_sequence)

    # Convert token indices to characters
    decoded_texts = [
        "".join([char_vocab_map[token] for token in sequence])
        for sequence in decoded_sequences
    ]
    gt_texts = []
    for i in range(text_lens.size(0)):
        gt_texts.append(
            "".join([char_vocab_map[token] for token in text[i, : text_lens[i]]])
        )

    print(decoded_texts)
    print(gt_texts)