Spaces:
Running
Running
File size: 7,409 Bytes
afddbb2 92bee19 afddbb2 92bee19 afddbb2 92bee19 afddbb2 92bee19 afddbb2 92bee19 afddbb2 92bee19 afddbb2 92bee19 afddbb2 92bee19 afddbb2 92bee19 1d5780d 92bee19 1d5780d 92bee19 1d5780d 92bee19 0027941 1d5780d 1d2ceb9 92bee19 1d2ceb9 92bee19 ef3f788 b8f16ed 92bee19 1d5780d 92bee19 fb6de7d 92bee19 1d5780d 92bee19 1d5780d 92bee19 ef3f788 92bee19 ef3f788 92bee19 1d5780d 92bee19 1d5780d 92bee19 1d5780d 92bee19 1d5780d 92bee19 ca0b76e 7cd8b56 1d5780d 92bee19 1d5780d 92bee19 afddbb2 92bee19 afddbb2 7cd8b56 92bee19 7cd8b56 92bee19 7cd8b56 92bee19 7cd8b56 1d5780d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 |
# import gradio as gr
# from pinecone import Pinecone
# from sentence_transformers import SentenceTransformer
# from openai import AzureOpenAI
# from huggingface_hub import login as hf_login
# import cohere
# import os
# from dotenv import load_dotenv
# # Load environment variables
# load_dotenv()
# # === ENVIRONMENT VARIABLES ===
# AZURE_OPENAI_KEY = os.getenv("AZURE_OPENAI_KEY")
# AZURE_OPENAI_ENDPOINT = os.getenv("AZURE_OPENAI_ENDPOINT")
# COHERE_API_KEY = os.getenv("COHERE_API_KEY")
# PINECONE_API_KEY = os.getenv("PINECONE_API_KEY")
# # Pinecone Setup
# EMBED_INDEXES = {
# "cohere": {
# "name": "cohere-pdf-index",
# "dimension": 1536,
# "region": "us-east-1"
# },
# "qwen": {
# "name": "gwen-embeddings",
# "dimension": 1024,
# "region": "us-west-2"
# }
# }
# pc = Pinecone(api_key=PINECONE_API_KEY)
# # Azure OpenAI Client
# llm_client = AzureOpenAI(
# api_key=AZURE_OPENAI_KEY,
# api_version="2024-12-01-preview",
# azure_endpoint=AZURE_OPENAI_ENDPOINT
# )
# # RAG Query Function
# def run_rag_query(query: str, model_choice: str) -> str:
# if model_choice not in EMBED_INDEXES:
# return f"Invalid model selected. Choose from {list(EMBED_INDEXES.keys())}"
# index_config = EMBED_INDEXES[model_choice]
# index = pc.Index(index_config["name"])
# # Embedding generation
# if model_choice == "cohere":
# co = cohere.Client(COHERE_API_KEY)
# embedding = co.embed(
# model="embed-v4.0",
# texts=[query],
# input_type="search_query",
# truncate="NONE"
# ).embeddings[0]
# else: # qwen
# model = SentenceTransformer("Qwen/Qwen3-Embedding-0.6B")
# embedding = model.encode([query], prompt_name="query")[0].tolist()
# # Pinecone query
# results = index.query(vector=embedding, top_k=15, include_metadata=True)
# context = "\n\n".join([m["metadata"].get("text", "") for m in results.matches])
# # Prompt for LLM
# prompt = f"""You are a helpful assistant. Use the following context to answer the question:
# Context:
# {context}
# Question:
# {query}
# Answer:"""
# response = llm_client.chat.completions.create(
# model="gpt-4o-mini",
# messages=[{"role": "user", "content": prompt}],
# temperature=0.3
# )
# answer = response.choices[0].message.content
# # Show top retrieved chunks with source
# top_matches = "\n\n".join([
# f"**Rank {i+1}** \n"
# f"π **Source:** {m.metadata.get('source', 'N/A')} \n"
# f"π **Text:** {m.metadata.get('text', '').strip()[:500]}..."
# for i, m in enumerate(results.matches)
# ])
# return f"### Answer:\n{answer}\n\n---\n### Top Retrieved Chunks:\n{top_matches}"
# # Gradio UI
# iface = gr.Interface(
# fn=run_rag_query,
# inputs=[
# gr.Textbox(label="Enter your query"),
# gr.Radio(["cohere", "qwen"], label="Choose embedding model")
# ],
# outputs=gr.Markdown(label="RAG Response"),
# title="QWEN vs COHERE RAG App",
# description="Ask a question and retrieve contextual answers from your embedded documents.\n[PDF Files Here](https://drive.google.com/drive/folders/1fq-PyNptFg20cknkzNrmW6Tev-869RY9?usp=sharing)"
# )
# if __name__ == "__main__":
# iface.launch()
import os
import uuid
import gradio as gr
import asyncio
from dotenv import load_dotenv
from pinecone import Pinecone
from sentence_transformers import SentenceTransformer
from openai import AzureOpenAI, AsyncAzureOpenAI
import cohere
# === Load .env Variables ===
load_dotenv()
AZURE_OPENAI_KEY = os.getenv("AZURE_OPENAI_KEY")
AZURE_OPENAI_ENDPOINT = os.getenv("AZURE_OPENAI_ENDPOINT")
AZURE_EMBEDDING_DEPLOYMENT = "embedding" # Make sure it matches Azure deployment name
PINECONE_API_KEY = os.getenv("PINECONE_API_KEY")
COHERE_API_KEY = os.getenv("COHERE_API_KEY")
EMBED_API = os.getenv("EMBED_API")
EMBED_ENDPOINT = os.getenv("EMBED_ENDPOINT")
# === Pinecone Setup ===
EMBED_INDEXES = {
"cohere": {
"name": "cohere-pdf-index",
"dimension": 1536,
"region": "us-east-1"
},
"qwen": {
"name": "gwen-embeddings",
"dimension": 1024,
"region": "us-west-2"
},
"ada": {
"name": "ada-embeddings",
"dimension": 1536,
"region": "us-east-1"
}
}
pc = Pinecone(api_key=PINECONE_API_KEY)
llm_client = AzureOpenAI(
api_key=AZURE_OPENAI_KEY,
api_version="2024-12-01-preview",
azure_endpoint=AZURE_OPENAI_ENDPOINT
)
# === Async Embedding Function for Ada ===
async def get_ada_embedding(texts):
client = AsyncAzureOpenAI(
api_key=EMBED_API,
api_version="2023-05-15",
base_url=f"{EMBED_ENDPOINT}/openai/deployments/{AZURE_EMBEDDING_DEPLOYMENT}"
)
response = await client.embeddings.create(
input=texts,
model=AZURE_EMBEDDING_DEPLOYMENT
)
return [d.embedding for d in response.data]
# === RAG Query Function ===
def run_rag_query(query: str, model_choice: str) -> str:
if model_choice not in EMBED_INDEXES:
return f"Invalid model selected. Choose from {list(EMBED_INDEXES.keys())}"
index_config = EMBED_INDEXES[model_choice]
index = pc.Index(index_config["name"])
# --- Embedding Generation ---
if model_choice == "cohere":
co = cohere.Client(COHERE_API_KEY)
embedding = co.embed(
model="embed-v4.0",
texts=[query],
input_type="search_query",
truncate="NONE"
).embeddings[0]
elif model_choice == "qwen":
model = SentenceTransformer("Qwen/Qwen3-Embedding-0.6B")
embedding = model.encode([query], prompt_name="query")[0].tolist()
elif model_choice == "ada":
embedding = asyncio.run(get_ada_embedding([query]))[0]
else:
return "Unsupported model."
# --- Pinecone Query ---
results = index.query(vector=embedding, top_k=15, include_metadata=True)
context = "\n\n".join([m["metadata"].get("text", "") for m in results.matches])
# --- LLM Prompt ---
prompt = f"""You are a helpful assistant. Use the following context to answer the question:
Context:
{context}
Question:
{query}
Answer:"""
response = llm_client.chat.completions.create(
model="gpt-4o-mini",
messages=[{"role": "user", "content": prompt}],
temperature=0.3
)
answer = response.choices[0].message.content
# --- Source Display ---
top_matches = "\n\n".join([
f"**Rank {i+1}** \n"
f"π **Source:** {m.metadata.get('source', 'N/A')} \n"
f"π **Text:** {m.metadata.get('text', '').strip()[:500]}..."
for i, m in enumerate(results.matches)
])
return f"### Answer:\n{answer}\n\n---\n### Top Retrieved Chunks:\n{top_matches}"
# === Gradio Interface ===
iface = gr.Interface(
fn=run_rag_query,
inputs=[
gr.Textbox(label="Enter your query"),
gr.Radio(["cohere", "qwen", "ada"], label="Choose embedding model")
],
outputs=gr.Markdown(label="RAG Response"),
title="QWEN vs COHERE vs ADA RAG App",
description="Ask a question and retrieve contextual answers from your embedded documents.\n[PDF Files Here](https://drive.google.com/drive/folders/1fq-PyNptFg20cknkzNrmW6Tev-869RY9?usp=sharing)"
)
if __name__ == "__main__":
iface.launch()
|