Spaces:
Sleeping
Sleeping
Commit
Β·
b72c02f
1
Parent(s):
879db00
version 2 of ui
Browse files
app.py
CHANGED
@@ -1,51 +1,43 @@
|
|
1 |
import streamlit as st
|
2 |
-
from transformers import
|
3 |
from peft import PeftModel
|
4 |
import torch
|
5 |
-
|
6 |
-
# Load model and tokenizer with adapter
|
7 |
@st.cache_resource
|
8 |
def load_model():
|
9 |
base_model = "Qwen/Qwen3-0.6B"
|
10 |
adapter_path = "faizabenatmane/Qwen-3-0.6B"
|
11 |
|
12 |
tokenizer = AutoTokenizer.from_pretrained(base_model)
|
13 |
-
|
14 |
-
base = AutoModelForSequenceClassification.from_pretrained(
|
15 |
-
base_model,
|
16 |
-
num_labels=2,
|
17 |
-
device_map="cpu"
|
18 |
-
)
|
19 |
|
20 |
model = PeftModel.from_pretrained(base, adapter_path)
|
21 |
model = model.merge_and_unload()
|
22 |
|
23 |
-
|
24 |
-
pipe = pipeline("text-classification", model=model, tokenizer=tokenizer)
|
25 |
return pipe
|
26 |
|
27 |
-
|
28 |
-
classifier = load_model()
|
29 |
|
30 |
-
# Streamlit UI
|
31 |
-
st.title("π° Fake News Detection")
|
32 |
text = st.text_area("Enter a news statement or claim:", height=200)
|
33 |
|
34 |
if st.button("Check"):
|
35 |
with st.spinner("Analyzing..."):
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
score = result['score']
|
40 |
|
41 |
-
|
42 |
-
if "1" in label or "POSITIVE" in label.upper():
|
43 |
-
verdict = "Real"
|
44 |
emoji = "β
"
|
45 |
-
|
46 |
-
|
47 |
emoji = "β"
|
|
|
|
|
|
|
|
|
48 |
|
49 |
-
# Show result
|
50 |
st.subheader("Prediction")
|
51 |
-
st.success(f"{emoji} The statement is likely: **{verdict}**
|
|
|
1 |
import streamlit as st
|
2 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
|
3 |
from peft import PeftModel
|
4 |
import torch
|
5 |
+
# Load model and tokenizer with adapter
|
|
|
6 |
@st.cache_resource
|
7 |
def load_model():
|
8 |
base_model = "Qwen/Qwen3-0.6B"
|
9 |
adapter_path = "faizabenatmane/Qwen-3-0.6B"
|
10 |
|
11 |
tokenizer = AutoTokenizer.from_pretrained(base_model)
|
12 |
+
base = AutoModelForCausalLM.from_pretrained(base_model, torch_dtype=torch.float16, device_map="auto")
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
model = PeftModel.from_pretrained(base, adapter_path)
|
15 |
model = model.merge_and_unload()
|
16 |
|
17 |
+
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer)
|
|
|
18 |
return pipe
|
19 |
|
20 |
+
generator = load_model()
|
|
|
21 |
|
22 |
+
# Streamlit UI
|
23 |
+
st.title("π° Fake News Detection (Text Generation)")
|
24 |
text = st.text_area("Enter a news statement or claim:", height=200)
|
25 |
|
26 |
if st.button("Check"):
|
27 |
with st.spinner("Analyzing..."):
|
28 |
+
prompt = f"Is the following statement real or fake?\n\n{text}\n\nAnswer:"
|
29 |
+
output = generator(prompt, max_length=50, do_sample=False)[0]['generated_text']
|
30 |
+
answer = output.split("Answer:")[-1].strip().split()[0].lower()
|
|
|
31 |
|
32 |
+
if "real" in answer:
|
|
|
|
|
33 |
emoji = "β
"
|
34 |
+
verdict = "Real"
|
35 |
+
elif "fake" in answer:
|
36 |
emoji = "β"
|
37 |
+
verdict = "Fake"
|
38 |
+
else:
|
39 |
+
emoji = "π€"
|
40 |
+
verdict = f"Unclear: {answer}"
|
41 |
|
|
|
42 |
st.subheader("Prediction")
|
43 |
+
st.success(f"{emoji} The statement is likely: **{verdict}**")
|