File size: 141,773 Bytes
8daa4df 8d8e935 8daa4df a4277ef 8d8e935 8daa4df 8d8e935 8daa4df 5c0c5a9 8d8e935 8daa4df a4277ef 8daa4df 5c0c5a9 8daa4df 5c0c5a9 8daa4df a4277ef 8d8e935 8daa4df 5c0c5a9 8daa4df 8d8e935 8daa4df 5c0c5a9 8daa4df 8d8e935 8daa4df 8d8e935 8daa4df 5c0c5a9 8daa4df 5c0c5a9 8daa4df 8d8e935 8daa4df 5c0c5a9 8daa4df 8d8e935 5c0c5a9 8d8e935 8daa4df 8d8e935 8daa4df 8d8e935 8daa4df f7fb142 8daa4df 9c9517b 8daa4df 9c9517b 8daa4df a4277ef 8d8e935 217c20b 8d8e935 217c20b 8d8e935 217c20b 8d8e935 217c20b 8d8e935 217c20b a4277ef 217c20b a4277ef 217c20b a4277ef 217c20b 8d8e935 a4277ef 8d8e935 a4277ef 217c20b 8d8e935 217c20b 8d8e935 a4277ef 217c20b 8d8e935 217c20b a4277ef 8d8e935 217c20b 8d8e935 217c20b 8d8e935 217c20b 8d8e935 217c20b 8d8e935 217c20b 8d8e935 217c20b 8d8e935 217c20b 8d8e935 217c20b 8d8e935 217c20b 8d8e935 217c20b 8d8e935 217c20b 8d8e935 217c20b 8d8e935 217c20b 8d8e935 217c20b 8d8e935 217c20b a4277ef f7fb142 8d8e935 f7fb142 8d8e935 f7fb142 8daa4df 8d8e935 5c0c5a9 8daa4df 8d8e935 a4277ef 8d8e935 a4277ef 5c0c5a9 7362f99 8daa4df 5c0c5a9 8daa4df 5c0c5a9 8daa4df 8d8e935 8daa4df 8d8e935 8daa4df 8d8e935 8daa4df 5c0c5a9 8daa4df 5c0c5a9 8daa4df 5c0c5a9 8daa4df 8d8e935 8daa4df 8d8e935 8daa4df 8d8e935 8daa4df 8d8e935 8daa4df a4277ef 8d8e935 a4277ef 8daa4df 8d8e935 8daa4df 5c0c5a9 8daa4df 5c0c5a9 8daa4df 8d8e935 8daa4df 9c9517b 8daa4df 8d8e935 f7fb142 8d8e935 f7fb142 8d8e935 f7fb142 8daa4df f7fb142 8d8e935 f7fb142 8daa4df f7fb142 8daa4df f7fb142 8daa4df f7fb142 8daa4df f7fb142 8daa4df f7fb142 8daa4df f7fb142 8d8e935 f7fb142 8daa4df 8d8e935 8daa4df 8d8e935 8daa4df 8d8e935 8daa4df 8d8e935 8daa4df 8d8e935 8daa4df 8d8e935 8daa4df 8d8e935 8daa4df 8d8e935 8daa4df 8d8e935 8daa4df 8d8e935 b1b519f 8d8e935 9c9517b 8d8e935 8daa4df 8d8e935 8daa4df 8d8e935 8daa4df 8d8e935 8daa4df 217c20b 8d8e935 217c20b 8d8e935 217c20b 8daa4df 217c20b 8d8e935 217c20b 8d8e935 217c20b 8d8e935 217c20b 8d8e935 a4277ef 8d8e935 a4277ef 8d8e935 a4277ef 8d8e935 a4277ef 8d8e935 a4277ef 217c20b 8d8e935 217c20b 8daa4df 8d8e935 217c20b 8d8e935 217c20b 8d8e935 8daa4df 217c20b 8daa4df 217c20b a4277ef 217c20b 8daa4df 8d8e935 ec23e9b 8d8e935 ec23e9b 8d8e935 ec23e9b 8d8e935 ec23e9b 8d8e935 ec23e9b 217c20b ec23e9b 8d8e935 217c20b 8d8e935 ec23e9b 8d8e935 ec23e9b 8daa4df ec23e9b 8d8e935 8daa4df ec23e9b a4277ef ec23e9b a4277ef ec23e9b a4277ef ec23e9b 8daa4df 8d8e935 8daa4df 8d8e935 8daa4df 8d8e935 8daa4df 8d8e935 8daa4df 8d8e935 8daa4df 8d8e935 8daa4df 8d8e935 8daa4df 8d8e935 8daa4df 8d8e935 8daa4df 8d8e935 8daa4df 8d8e935 8daa4df 8d8e935 8daa4df 8d8e935 8daa4df 8d8e935 9c9517b 8d8e935 8daa4df 8d8e935 8daa4df 8d8e935 8daa4df 8d8e935 8daa4df 8d8e935 8daa4df |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 |
#!/usr/bin/env python3
"""
Interactive Benchmark Explorer
A comprehensive web application for exploring OpenThoughts benchmark correlations and model performance
"""
import streamlit as st
import pandas as pd
import numpy as np
import plotly.express as px
import plotly.graph_objects as go
from plotly.subplots import make_subplots
import seaborn as sns
import matplotlib.pyplot as plt
from scipy.stats import pearsonr, kendalltau
from scipy.optimize import minimize
import ast
import io
import base64
from itertools import combinations
import warnings
import time
from sklearn.preprocessing import StandardScaler
from sklearn.ensemble import RandomForestRegressor
from sklearn.cluster import KMeans
from sklearn.metrics import r2_score, mean_absolute_error
from scipy.optimize import curve_fit
import re
warnings.filterwarnings('ignore')
# Configure page
st.set_page_config(
page_title="OpenThoughts Evalchemy Benchmark Explorer",
page_icon="๐",
layout="wide",
initial_sidebar_state="expanded"
)
# Custom CSS for better styling
st.markdown("""
<style>
.main-header {
font-size: 2.5rem;
font-weight: bold;
color: #1f77b4;
text-align: center;
margin-bottom: 2rem;
}
.metric-card {
background-color: #f8f9fa;
padding: 1rem;
border-radius: 0.5rem;
border-left: 4px solid #1f77b4;
margin: 0.5rem 0;
}
.correlation-high { color: #d73027; font-weight: bold; }
.correlation-medium { color: #fdae61; font-weight: bold; }
.correlation-low { color: #4575b4; font-weight: bold; }
.category-math { color: #d73027; font-weight: bold; }
.category-code { color: #1f78b4; font-weight: bold; }
.category-science { color: #33a02c; font-weight: bold; }
.category-general { color: #ff7f00; font-weight: bold; }
</style>
""", unsafe_allow_html=True)
@st.cache_data
def load_trusted_models():
"""Load and parse trusted models from CSV file"""
try:
df = pd.read_csv('trusted_models.csv')
trusted_models = []
experiment_codes = []
for idx, row in df.iterrows():
model_name = str(row['Model Name']).strip()
if model_name and model_name != 'nan' and model_name not in ['LOW PRIORITY EVALS', 'Experiment Name']:
trusted_models.append(model_name)
# Also track experiment codes (patterns like a1_, b2_, etc.)
if re.match(r'^[a-z]\d+_', model_name):
experiment_codes.append(model_name)
print(f"Loaded {len(trusted_models)} trusted models ({len(experiment_codes)} experiment codes)")
return trusted_models, experiment_codes
except Exception as e:
print(f"Error loading trusted models: {e}")
return [], []
def extract_experiment_pattern(model_name):
"""Extract experiment pattern from mlfoundations-dev model names"""
if not model_name.startswith('mlfoundations-dev/'):
return None
suffix = model_name[len('mlfoundations-dev/'):]
# Look for patterns like b2_math_difficulty_0.3k_eval_636d
match = re.match(r'^([a-z]\d+_[^_]+(?:_[^_]+)*)', suffix)
if match:
return match.group(1)
# Look for direct experiment code matches
match = re.match(r'^([a-z]\d+_[a-zA-Z_]+)', suffix)
if match:
return match.group(1)
return None
def filter_trusted_models(df, trusted_models_data):
"""Filter dataframe to only include trusted models with enhanced experiment matching"""
if not trusted_models_data:
return df
# Unpack the data
if isinstance(trusted_models_data, tuple):
trusted_models, experiment_codes = trusted_models_data
else:
# Backward compatibility
trusted_models = trusted_models_data
experiment_codes = [m for m in trusted_models if re.match(r'^[a-z]\d+_', m)]
trusted_set = set(trusted_models)
experiment_set = set(experiment_codes)
def is_trusted_model(model_name):
# Direct exact match
if model_name in trusted_set:
return True
# Handle format conversion: __ in trusted models vs / in dataset
# Convert model_name format to match trusted models format
model_name_converted = model_name.replace('/', '__')
if model_name_converted in trusted_set:
return True
# Convert trusted models format to match dataset format
for trusted in trusted_models:
trusted_converted = trusted.replace('__', '/')
if model_name == trusted_converted:
return True
# Case-insensitive partial matching for regular models
model_lower = model_name.lower()
for trusted in trusted_models:
trusted_lower = trusted.lower()
# Also check converted formats in case-insensitive matching
trusted_converted_lower = trusted.replace('__', '/').lower()
model_converted_lower = model_name.replace('/', '__').lower()
# Flexible matching with minimum length requirements
if len(trusted_lower) >= 5 and trusted_lower in model_lower:
return True
if len(model_lower) >= 5 and model_lower in trusted_lower:
return True
if len(trusted_converted_lower) >= 5 and trusted_converted_lower in model_lower:
return True
if len(model_converted_lower) >= 5 and model_converted_lower in trusted_lower:
return True
# Check core model names (after / or __)
if ('/' in model_name or '__' in model_name) and ('/' in trusted or '__' in trusted):
# Extract core names using both separators
model_core = model_name.replace('__', '/').split('/')[-1].lower()
trusted_core = trusted.replace('__', '/').split('/')[-1].lower()
if len(model_core) >= 3 and len(trusted_core) >= 3:
if model_core in trusted_core or trusted_core in model_core:
return True
# Experiment code matching for mlfoundations-dev models
if model_name.startswith('mlfoundations-dev/'):
pattern = extract_experiment_pattern(model_name)
if pattern:
# Try exact match first
if pattern in experiment_set:
return True
# Try partial matches with experiment codes
for exp_code in experiment_codes:
if pattern.startswith(exp_code) or exp_code.startswith(pattern):
return True
return False
# Filter models
trusted_indices = [idx for idx in df.index if is_trusted_model(idx)]
filtered_df = df.loc[trusted_indices]
return filtered_df if len(filtered_df) > 0 else df
@st.cache_data
def load_comprehensive_data(use_trusted_filter=True):
"""Load and clean the comprehensive benchmark data."""
try:
# Use explicit encoding and error handling
df = pd.read_csv("max_comprehensive_benchmark_scores.csv", index_col=0, encoding='utf-8')
# Clean the data - handle list-like values stored as strings
# Process in batches for better performance with large datasets
total_cols = len(df.columns)
if total_cols > 20:
# Show progress for large datasets
progress_text = st.empty()
progress_bar = st.progress(0)
for i, col in enumerate(df.columns):
if total_cols > 20:
progress_text.text(f"Processing column {i+1}/{total_cols}: {col}")
progress_bar.progress((i+1) / total_cols)
def extract_value(x):
if pd.isna(x):
return np.nan
if isinstance(x, str) and x.startswith('['):
try:
parsed = ast.literal_eval(x)
if isinstance(parsed, list) and len(parsed) > 0:
return float(parsed[0]) # Ensure float type
else:
return np.nan
except (ValueError, SyntaxError):
return np.nan
try:
return float(x) # Ensure numeric values are float
except (ValueError, TypeError):
return np.nan
df[col] = df[col].apply(extract_value)
df[col] = pd.to_numeric(df[col], errors='coerce')
if total_cols > 20:
progress_text.empty()
progress_bar.empty()
# Filter to trusted models only if requested
if use_trusted_filter:
trusted_models_data = load_trusted_models()
df = filter_trusted_models(df, trusted_models_data)
# Filter to only models that have data for at least a few benchmarks
min_benchmarks = 3
df_filtered = df.dropna(thresh=min_benchmarks, axis=0)
# Ensure we have some data
if len(df_filtered) == 0:
st.error("No models found with sufficient benchmark data.")
return pd.DataFrame()
return df_filtered
except FileNotFoundError:
st.error("Could not find max_comprehensive_benchmark_scores.csv. Please ensure the data file exists.")
return pd.DataFrame()
except Exception as e:
st.error(f"Error loading data: {str(e)}")
return pd.DataFrame()
@st.cache_data
def load_stderr_data(use_trusted_filter=True):
"""Load and clean standard error data."""
try:
stderr_df = pd.read_csv("max_benchmark_standard_errors.csv", index_col=0, encoding='utf-8')
# Clean the data
for col in stderr_df.columns:
def extract_value(x):
if pd.isna(x):
return np.nan
if isinstance(x, str) and x.startswith('['):
try:
parsed = ast.literal_eval(x)
if isinstance(parsed, list) and len(parsed) > 0:
return float(parsed[0]) # Ensure float type
else:
return np.nan
except (ValueError, SyntaxError):
return np.nan
try:
return float(x) # Ensure numeric values are float
except (ValueError, TypeError):
return np.nan
stderr_df[col] = stderr_df[col].apply(extract_value)
stderr_df[col] = pd.to_numeric(stderr_df[col], errors='coerce')
# Filter to trusted models only if requested
if use_trusted_filter:
trusted_models_data = load_trusted_models()
stderr_df = filter_trusted_models(stderr_df, trusted_models_data)
return stderr_df
except FileNotFoundError:
st.warning("Could not find max_benchmark_standard_errors.csv. Standard error analysis will be limited.")
return pd.DataFrame()
except Exception as e:
st.warning(f"Error loading standard error data: {str(e)}")
return pd.DataFrame()
def clean_benchmark_name(name):
"""Clean benchmark names for consistent display."""
return (name.replace("LiveCodeBench_accuracy_avg", "LiveCodeBenchv2")
.replace('_accuracy_avg', '')
.replace('_accuracy', '')
.replace('LiveCodeBench', 'LCB')
.replace('GPQADiamond', 'GPQAD')
)
def get_focused_benchmark_mapping():
"""Define the target benchmarks and categories."""
target_benchmarks = {
# Math benchmarks
'AIME24': 'AIME24_accuracy_avg',
'AIME25': 'AIME25_accuracy_avg',
'AMC23': 'AMC23_accuracy_avg',
'MATH500': 'MATH500_accuracy',
# Code benchmarks
'CodeElo': 'CodeElo_accuracy_avg',
'CodeForces': 'CodeForces_accuracy_avg',
'LCBv2': 'LiveCodeBench_accuracy_avg',
'LCBv5': 'LiveCodeBenchv5_accuracy_avg',
# Science benchmarks
'GPQADiamond': 'GPQADiamond_accuracy_avg',
'JEEBench': 'JEEBench_accuracy_avg',
# General benchmarks
'MMLUPro': 'MMLUPro_accuracy_avg',
'HLE': 'HLE_accuracy_avg'
}
benchmark_categories = {
'Math': ['AIME24', 'AIME25', 'AMC23', 'MATH500'],
'Code': ['CodeElo', 'CodeForces', 'LCBv2', 'LCBv5'],
'Science': ['GPQADiamond', 'JEEBench'],
'General': ['MMLUPro', 'HLE']
}
colors = {'Math': '#d73027', 'Code': '#1f78b4', 'Science': '#33a02c', 'General': '#ff7f00'}
# Create reverse mapping
col_to_category = {}
for category, bench_list in benchmark_categories.items():
for bench_name in bench_list:
actual_name = target_benchmarks.get(bench_name)
if actual_name:
col_to_category[actual_name] = category
return target_benchmarks, benchmark_categories, colors, col_to_category
def compute_correlations(df, method='kendall'):
"""Compute correlation matrix using specified method."""
if method == 'pearson':
return df.corr(method='pearson')
elif method == 'kendall':
return df.corr(method='kendall')
else:
raise ValueError(f"Unsupported correlation method: {method}")
def create_interactive_heatmap(corr_matrix, title="Correlation Heatmap"):
"""Create an interactive correlation heatmap using Plotly."""
target_benchmarks, benchmark_categories, colors, col_to_category = get_focused_benchmark_mapping()
# Get clean names for display
clean_names = [clean_benchmark_name(name) for name in corr_matrix.columns]
# Convert to percentages for display
corr_matrix_pct = (corr_matrix * 100).round(1)
# Create hover text
hover_text = []
for i, bench1 in enumerate(corr_matrix.columns):
hover_row = []
for j, bench2 in enumerate(corr_matrix.columns):
if i == j:
hover_row.append(f"{clean_names[i]}<br>Correlation: 100%")
else:
corr_val = corr_matrix_pct.iloc[i, j]
if pd.isna(corr_val):
hover_row.append(f"{clean_names[i]} vs {clean_names[j]}<br>No data")
else:
hover_row.append(f"{clean_names[i]} vs {clean_names[j]}<br>Correlation: {corr_val:.1f}%")
hover_text.append(hover_row)
# Create the heatmap
fig = go.Figure(data=go.Heatmap(
z=corr_matrix.values,
x=clean_names,
y=clean_names,
colorscale='RdBu_r',
zmid=0,
text=corr_matrix_pct.values,
texttemplate="%{text}",
textfont={"size": 10},
hoverinfo='text',
hovertext=hover_text,
colorbar=dict(title="Correlation", tickformat=".2f")
))
# Update layout
fig.update_layout(
title=title,
xaxis_title="",
yaxis_title="",
width=800,
height=800,
font=dict(size=12)
)
# Color the axis labels by category
for i, bench in enumerate(corr_matrix.columns):
category = col_to_category.get(bench, 'Unknown')
color = colors.get(category, 'black')
return fig
def create_scatter_plot(df, x_bench, y_bench, stderr_df=None):
"""Create an interactive scatter plot between two benchmarks."""
if x_bench not in df.columns or y_bench not in df.columns:
return None
# Get common data
common_data = df[[x_bench, y_bench]].dropna()
if len(common_data) < 3:
return None
x_vals = common_data[x_bench]
y_vals = common_data[y_bench]
# Calculate correlation
corr, p_val = pearsonr(x_vals, y_vals)
# Create figure
fig = go.Figure()
# Add scatter points
fig.add_trace(go.Scatter(
x=x_vals,
y=y_vals,
mode='markers',
text=common_data.index,
hovertemplate=(
"<b>%{text}</b><br>" +
f"{clean_benchmark_name(x_bench)}: %{{x:.3f}}<br>" +
f"{clean_benchmark_name(y_bench)}: %{{y:.3f}}<br>" +
"<extra></extra>"
),
marker=dict(size=8, opacity=0.7, color='steelblue')
))
# Add regression line
z = np.polyfit(x_vals, y_vals, 1)
p = np.poly1d(z)
x_line = np.linspace(x_vals.min(), x_vals.max(), 100)
# Format p-value appropriately
if p_val < 0.001:
p_str = f"p < 0.001"
else:
p_str = f"p = {p_val:.3f}"
fig.add_trace(go.Scatter(
x=x_line,
y=p(x_line),
mode='lines',
name=f'r = {corr:.3f}, {p_str}',
line=dict(color='red', dash='dash')
))
# Update layout
fig.update_layout(
title=f"{clean_benchmark_name(y_bench)} vs {clean_benchmark_name(x_bench)}",
xaxis_title=clean_benchmark_name(x_bench),
yaxis_title=clean_benchmark_name(y_bench),
showlegend=True,
width=600,
height=500
)
return fig
def filter_target_benchmarks(df):
"""Filter dataframe to only include target benchmarks."""
target_benchmarks, _, _, _ = get_focused_benchmark_mapping()
available_benchmarks = []
for display_name, actual_name in target_benchmarks.items():
if actual_name in df.columns:
available_benchmarks.append(actual_name)
return df[available_benchmarks].copy()
@st.cache_data
def estimate_missing_ranks(df, method='kendall', min_corr=0.1, min_benchmarks=2, _version="v2_fixed_ranking"):
"""
Estimate missing ranks using rank correlation.
Now ensures ALL missing values are filled.
Parameters:
-----------
df: DataFrame
Input data with missing values
method: Rank correlation method ('kendall')
min_corr: float
Minimum correlation threshold for using a benchmark (lowered to 0.1)
min_benchmarks: int
Minimum number of benchmarks needed for estimation (lowered to 2)
_version: str
Version parameter to force cache invalidation when ranking logic changes
"""
# Convert to ranks (higher scores get better/lower ranks)
df_ranks = df.rank(ascending=False)
# Compute rank correlation matrix
if method == 'kendall':
rank_corr_matrix = df_ranks.corr(method='kendall')
else:
raise ValueError(f"Unsupported correlation method: {method}")
# Pre-compute correlation thresholds to avoid repeated calculations
valid_correlations = {}
for benchmark in df.columns:
valid_correlations[benchmark] = []
for other_bench in df.columns:
if benchmark != other_bench:
corr_val = rank_corr_matrix.loc[benchmark, other_bench]
if not pd.isna(corr_val) and abs(corr_val) >= min_corr:
valid_correlations[benchmark].append((other_bench, abs(corr_val)))
# Sort by correlation strength for better prediction
valid_correlations[benchmark].sort(key=lambda x: x[1], reverse=True)
# For each model and benchmark combination with missing data
missing_count = 0
total_missing = df_ranks.isna().sum().sum()
for model_idx in df.index:
available_benchmarks = df_ranks.columns[df_ranks.loc[model_idx].notna()].tolist()
if len(available_benchmarks) >= min_benchmarks:
for benchmark in df.columns:
if pd.isna(df_ranks.loc[model_idx, benchmark]):
# Get pre-computed valid correlations for this benchmark
valid_pairs = valid_correlations[benchmark]
correlations = []
ranks = []
# First try: use correlations above min_corr threshold
for other_bench, corr_strength in valid_pairs:
if other_bench in available_benchmarks:
correlations.append(corr_strength)
ranks.append(df_ranks.loc[model_idx, other_bench])
# Use more benchmarks for better estimation
if len(correlations) >= 8:
break
# If no good correlations found, use ANY available benchmarks
if len(correlations) == 0:
for other_bench in available_benchmarks:
if other_bench != benchmark:
corr_val = rank_corr_matrix.loc[benchmark, other_bench]
if not pd.isna(corr_val):
correlations.append(max(0.01, abs(corr_val))) # Minimum weight
ranks.append(df_ranks.loc[model_idx, other_bench])
# If still no correlations, use simple average of available ranks
if len(correlations) == 0:
available_ranks = [df_ranks.loc[model_idx, bench] for bench in available_benchmarks]
if available_ranks:
estimated_rank = np.mean(available_ranks)
df_ranks.loc[model_idx, benchmark] = estimated_rank
missing_count += 1
else:
# Weighted average of ranks using correlations as weights
correlations = np.array(correlations)
ranks = np.array(ranks)
# Normalize weights
weights = correlations / correlations.sum()
estimated_rank = np.average(ranks, weights=weights)
df_ranks.loc[model_idx, benchmark] = estimated_rank
missing_count += 1
return df_ranks
@st.cache_data
def create_consensus_ranking(df, method='kendall', use_rank_imputation=True, min_benchmarks_for_ranking=6):
"""
Create a consensus ranking using rank correlation-based estimation.
Parameters:
-----------
df: DataFrame
Input data with models as rows and benchmarks as columns
method: str
Correlation method for rank imputation ('kendall')
use_rank_imputation: bool
Whether to use rank imputation for missing values
min_benchmarks_for_ranking: int
Minimum number of original benchmarks required for a model to be included in ranking
Returns:
tuple: (ranking_df, rank_matrix, metadata)
"""
# Filter models to only include those with sufficient benchmark coverage
original_coverage = df.notna().sum(axis=1)
models_with_sufficient_data = original_coverage[original_coverage >= min_benchmarks_for_ranking].index
if len(models_with_sufficient_data) == 0:
# If no models meet the criteria, lower the threshold
min_benchmarks_for_ranking = max(1, original_coverage.max() // 2)
models_with_sufficient_data = original_coverage[original_coverage >= min_benchmarks_for_ranking].index
# Filter dataframe to only include models with sufficient data
df_filtered = df.loc[models_with_sufficient_data]
if use_rank_imputation:
# Estimate missing ranks
df_ranks = estimate_missing_ranks(df_filtered, method)
# Calculate consensus rank for each model (median rank across all benchmarks)
consensus_ranks = df_ranks.median(axis=1, skipna=True)
# Calculate coverage and estimation statistics
original_coverage_filtered = df_filtered.notna().sum(axis=1)
imputed_coverage = df_ranks.notna().sum(axis=1)
estimated_count = imputed_coverage - original_coverage_filtered
# Create ranking dataframe
ranking_data = []
for model in df_filtered.index:
ranking_data.append({
'Model': model.split('/')[-1] if '/' in model else model,
'Full_Model_Name': model,
'Consensus_Rank': float(consensus_ranks[model]),
'Original_Benchmarks': int(original_coverage_filtered[model]),
'Total_Benchmarks': len(df_filtered.columns), # Always 12 since we fill all missing values
'Estimated_Ranks': int(estimated_count[model]),
'Coverage_Pct': float(original_coverage_filtered[model] / len(df_filtered.columns) * 100)
})
ranking_df = pd.DataFrame(ranking_data).sort_values('Consensus_Rank', ascending=True) # Lower rank = better
metadata = {
'method': method,
'imputation_used': True,
'total_estimates': int(estimated_count.sum()),
'models_with_estimates': int((estimated_count > 0).sum()),
'ranking_method': 'consensus_rank',
'min_benchmarks_required': min_benchmarks_for_ranking,
'models_filtered_out': len(df) - len(df_filtered),
'total_benchmarks': len(df_filtered.columns)
}
else:
# Simple ranking based on available data only
df_ranks = df_filtered.rank(method='min', ascending=False, na_option='keep')
median_ranks = df_ranks.median(axis=1, skipna=True)
ranking_data = []
for model in df_filtered.index:
ranking_data.append({
'Model': model.split('/')[-1] if '/' in model else model,
'Full_Model_Name': model,
'Consensus_Rank': float(median_ranks[model]),
'Original_Benchmarks': int(df_filtered.notna().sum(axis=1)[model]),
'Total_Benchmarks': int(df_filtered.notna().sum(axis=1)[model]),
'Estimated_Ranks': 0,
'Coverage_Pct': float(df_filtered.notna().sum(axis=1)[model] / len(df_filtered.columns) * 100)
})
ranking_df = pd.DataFrame(ranking_data).sort_values('Consensus_Rank', ascending=True)
metadata = {
'method': 'none',
'imputation_used': False,
'total_estimates': 0,
'models_with_estimates': 0,
'ranking_method': 'median_rank',
'min_benchmarks_required': min_benchmarks_for_ranking,
'models_filtered_out': len(df) - len(df_filtered),
'total_benchmarks': len(df_filtered.columns)
}
return ranking_df, df_ranks, metadata
@st.cache_data
def create_optimized_radar_chart(df_display, selected_models, selected_benchmarks_for_radar):
"""Create an optimized radar chart for the selected models and benchmarks."""
if not selected_benchmarks_for_radar or not selected_models:
return None
# Pre-filter data to only what we need
filtered_data = df_display.loc[selected_models, selected_benchmarks_for_radar]
clean_benchmark_names = [clean_benchmark_name(b) for b in selected_benchmarks_for_radar]
# Define colors for different models
colors_list = ['#1f77b4', '#ff7f0e', '#2ca02c', '#d62728', '#9467bd',
'#8c564b', '#e377c2', '#7f7f7f', '#bcbd22', '#17becf']
fig = go.Figure()
# Calculate dynamic range for better visualization
all_values = filtered_data.values.flatten()
all_values = all_values[~pd.isna(all_values)]
if len(all_values) > 0:
min_val = float(np.min(all_values))
max_val = float(np.max(all_values))
# Add some padding
range_padding = (max_val - min_val) * 0.1
radar_min = max(0, min_val - range_padding)
radar_max = min(1, max_val + range_padding)
else:
radar_min, radar_max = 0, 1
for i, model in enumerate(selected_models):
# Get model data for selected benchmarks only
model_scores = []
for benchmark in selected_benchmarks_for_radar:
score = filtered_data.loc[model, benchmark]
# Convert to float, use 0.0 for any remaining NaN values
model_scores.append(0.0 if pd.isna(score) else float(score))
# Close the radar chart by adding the first value at the end
radar_values = model_scores + [model_scores[0]]
radar_benchmarks = clean_benchmark_names + [clean_benchmark_names[0]]
# Create model name for legend (remove path prefix if present)
model_display_name = model.split('/')[-1] if '/' in model else model
# Use color from list, cycling if needed
model_color = colors_list[i % len(colors_list)]
fig.add_trace(go.Scatterpolar(
r=radar_values,
theta=radar_benchmarks,
fill='toself',
name=model_display_name,
line_color=model_color,
hovertemplate='<b>%{theta}</b><br>Score: %{r:.3f}<extra></extra>'
))
# Adjust chart size based on number of models
chart_height = 600 if len(selected_models) <= 3 else 700
fig.update_layout(
polar=dict(
radialaxis=dict(
visible=True,
range=[radar_min, radar_max],
tickformat='.2f'
)),
showlegend=True,
title=f"Model Performance Radar Chart ({len(selected_benchmarks_for_radar)} benchmarks, {len(selected_models)} models)",
width=700,
height=chart_height
)
return fig
def weighted_correlation(x, y, weights):
"""Compute weighted Pearson correlation coefficient."""
# Remove NaN values
valid_mask = ~(np.isnan(x) | np.isnan(y) | np.isnan(weights))
if valid_mask.sum() < 3:
return np.nan, np.nan
x_clean = x[valid_mask]
y_clean = y[valid_mask]
w_clean = weights[valid_mask]
# Weighted means
x_mean = np.average(x_clean, weights=w_clean)
y_mean = np.average(y_clean, weights=w_clean)
# Weighted covariance and variances
cov = np.average((x_clean - x_mean) * (y_clean - y_mean), weights=w_clean)
var_x = np.average((x_clean - x_mean)**2, weights=w_clean)
var_y = np.average((y_clean - y_mean)**2, weights=w_clean)
# Weighted correlation
if var_x == 0 or var_y == 0:
return np.nan, np.nan
corr = cov / np.sqrt(var_x * var_y)
# Approximate degrees of freedom for weighted data
# Using effective sample size approximation
sum_w = np.sum(w_clean)
sum_w2 = np.sum(w_clean**2)
eff_n = sum_w**2 / sum_w2
# Standard error of correlation (approximate)
if eff_n > 3:
from scipy.stats import t
se_corr = np.sqrt((1 - corr**2) / (eff_n - 2))
t_stat = corr / se_corr
p_value = 2 * (1 - t.cdf(abs(t_stat), eff_n - 2))
else:
p_value = np.nan
return corr, p_value
def match_scores_with_stderr(scores_df, stderr_df, target_benchmarks):
"""Match score columns with their corresponding stderr columns."""
target_benchmarks_dict, benchmark_categories, colors, col_to_category = get_focused_benchmark_mapping()
score_to_stderr_mapping = {}
# Look for stderr matches with various naming patterns
for col in target_benchmarks:
stderr_col = None
# Try different naming patterns in order of preference
potential_stderr_names = [
f"{col}_std_err", # Direct match
f"{col.replace('_accuracy', '_accuracy_std_err')}", # Handle _accuracy vs _accuracy_avg
f"{col.replace('_accuracy_avg', '_accuracy_std_err')}", # Handle _accuracy_avg
]
# Special handling for MATH500 and other variations
if col == 'MATH500_accuracy':
potential_stderr_names.extend([
'MATH500x2_accuracy_std_err',
'MATH500_accuracy_std_err'
])
# Add 'x2' variants for all benchmarks (in case there are other x2 versions)
base_name = col.replace('_accuracy_avg', '').replace('_accuracy', '')
potential_stderr_names.extend([
f"{base_name}x2_accuracy_std_err",
f"{base_name}_accuracy_std_err"
])
# Find the first matching column with sufficient data
for stderr_name in potential_stderr_names:
if stderr_name in stderr_df.columns:
# Check if there's sufficient data (at least 10 models)
non_null_count = stderr_df[stderr_name].notna().sum()
if non_null_count >= 10:
stderr_col = stderr_name
break
if stderr_col:
score_to_stderr_mapping[col] = stderr_col
return score_to_stderr_mapping
def create_uncertainty_aware_correlation_matrix(scores_df, stderr_df, score_to_stderr_mapping):
"""Create correlation matrix accounting for measurement uncertainties."""
target_benchmarks, benchmark_categories, colors, col_to_category = get_focused_benchmark_mapping()
benchmarks = list(score_to_stderr_mapping.keys())
n_benchmarks = len(benchmarks)
# Initialize matrices
corr_matrix = np.full((n_benchmarks, n_benchmarks), np.nan)
pvalue_matrix = np.full((n_benchmarks, n_benchmarks), np.nan)
weighted_corr_matrix = np.full((n_benchmarks, n_benchmarks), np.nan)
weighted_pvalue_matrix = np.full((n_benchmarks, n_benchmarks), np.nan)
for i, bench1 in enumerate(benchmarks):
for j, bench2 in enumerate(benchmarks):
if i == j:
# Diagonal: compute reliability coefficient
stderr_col = score_to_stderr_mapping[bench1]
# Has actual stderr data
# reliability = 1 - (measurement_error_variance / total_variance)
scores = scores_df[bench1].dropna()
stderrs = stderr_df[stderr_col].dropna()
# Align data
common_idx = scores.index.intersection(stderrs.index)
if len(common_idx) >= 3:
aligned_scores = scores.loc[common_idx]
aligned_stderrs = stderrs.loc[common_idx]
# Total variance in observed scores
total_variance = aligned_scores.var()
# Mean measurement error variance
mean_error_variance = (aligned_stderrs**2).mean()
# Reliability = proportion of total variance that is "true" variance
if total_variance > 0:
reliability = max(0, 1 - (mean_error_variance / total_variance))
# For regular correlation, we still use 1.0 (mathematical definition)
corr_matrix[i, j] = 1.0
pvalue_matrix[i, j] = 0.0
# For weighted correlation, use reliability coefficient
weighted_corr_matrix[i, j] = reliability
weighted_pvalue_matrix[i, j] = 0.0
else:
corr_matrix[i, j] = 1.0
weighted_corr_matrix[i, j] = 0.0
pvalue_matrix[i, j] = 0.0
weighted_pvalue_matrix[i, j] = 0.0
else:
# Insufficient data
corr_matrix[i, j] = 1.0
weighted_corr_matrix[i, j] = np.nan
pvalue_matrix[i, j] = 0.0
weighted_pvalue_matrix[i, j] = np.nan
continue
# Get common valid data
# First, align the dataframes by common index
common_idx = scores_df.index.intersection(stderr_df.index)
x = scores_df.loc[common_idx, bench1].values
y = scores_df.loc[common_idx, bench2].values
# Get standard errors
stderr1_col = score_to_stderr_mapping[bench1]
stderr2_col = score_to_stderr_mapping[bench2]
# Standard (unweighted) correlation
valid_mask = ~(np.isnan(x) | np.isnan(y))
if valid_mask.sum() >= 3:
corr, p_val = pearsonr(x[valid_mask], y[valid_mask])
corr_matrix[i, j] = corr
pvalue_matrix[i, j] = p_val
# Weighted correlation
stderr1 = stderr_df.loc[common_idx, stderr1_col].values
stderr2 = stderr_df.loc[common_idx, stderr2_col].values
# Weighted correlation using inverse variance weighting
# Weight = 1 / (stderr1^2 + stderr2^2) - accounting for error in both variables
valid_stderr_mask = ~(np.isnan(stderr1) | np.isnan(stderr2)) & valid_mask
if valid_stderr_mask.sum() >= 3:
combined_variance = stderr1[valid_stderr_mask]**2 + stderr2[valid_stderr_mask]**2
# Avoid division by zero
weights = np.where(combined_variance > 0, 1.0 / combined_variance, 0)
if weights.sum() > 0:
w_corr, w_p_val = weighted_correlation(
x[valid_stderr_mask],
y[valid_stderr_mask],
weights
)
weighted_corr_matrix[i, j] = w_corr
weighted_pvalue_matrix[i, j] = w_p_val
else:
# Use regular correlation for weighted matrix too
if valid_mask.sum() >= 3:
weighted_corr_matrix[i, j] = corr_matrix[i, j]
weighted_pvalue_matrix[i, j] = pvalue_matrix[i, j]
# Convert to DataFrames
corr_df = pd.DataFrame(corr_matrix, index=benchmarks, columns=benchmarks)
pvalue_df = pd.DataFrame(pvalue_matrix, index=benchmarks, columns=benchmarks)
weighted_corr_df = pd.DataFrame(weighted_corr_matrix, index=benchmarks, columns=benchmarks)
weighted_pvalue_df = pd.DataFrame(weighted_pvalue_matrix, index=benchmarks, columns=benchmarks)
return corr_df, pvalue_df, weighted_corr_df, weighted_pvalue_df
def create_uncertainty_weighted_heatmap_plotly(weighted_corr_df, title_prefix="Uncertainty-Weighted Correlation Analysis"):
"""Create a single uncertainty-weighted heatmap using Plotly."""
target_benchmarks, benchmark_categories, colors, col_to_category = get_focused_benchmark_mapping()
# Get clean names for display
clean_names = [clean_benchmark_name(name) for name in weighted_corr_df.columns]
# Weighted correlation heatmap
weighted_corr_pct = (weighted_corr_df * 100).round(1)
# Create hover text for weighted correlations
hover_text_weighted = []
for i, bench1 in enumerate(weighted_corr_df.columns):
hover_row = []
for j, bench2 in enumerate(weighted_corr_df.columns):
if i == j:
reliability = weighted_corr_df.iloc[i, j]
if pd.isna(reliability):
hover_row.append(f"{clean_names[i]}<br>Reliability: Unknown")
else:
hover_row.append(f"{clean_names[i]}<br>Reliability: {reliability*100:.1f}%")
else:
corr_val = weighted_corr_pct.iloc[i, j]
if pd.isna(corr_val):
hover_row.append(f"{clean_names[i]} vs {clean_names[j]}<br>No weighted data")
else:
hover_row.append(f"{clean_names[i]} vs {clean_names[j]}<br>Weighted correlation: {corr_val:.1f}%")
hover_text_weighted.append(hover_row)
# Create the heatmap
fig = go.Figure(data=go.Heatmap(
z=weighted_corr_df.values,
x=clean_names,
y=clean_names,
colorscale='RdBu_r',
zmid=0,
text=weighted_corr_pct.values,
texttemplate="%{text}",
textfont={"size": 10},
hoverinfo='text',
hovertext=hover_text_weighted,
colorbar=dict(title="Correlation")
))
# Update layout
fig.update_layout(
title=f"{title_prefix}<br><sub>Diagonal shows reliability coefficients (signal-to-noise ratios)</sub>",
width=800,
height=700,
font=dict(size=12),
xaxis=dict(tickangle=45),
yaxis=dict(tickangle=0)
)
return fig
def create_uncertainty_aware_heatmap_plotly(corr_df, weighted_corr_df, title_prefix="Correlation Analysis"):
"""Create side-by-side interactive heatmaps comparing regular vs weighted correlations using Plotly."""
target_benchmarks, benchmark_categories, colors, col_to_category = get_focused_benchmark_mapping()
# Get clean names for display
clean_names = [clean_benchmark_name(name) for name in corr_df.columns]
# Create subplots
fig = make_subplots(
rows=1, cols=2,
subplot_titles=('Regular Correlation Matrix<br>(Equal weighting)',
'Uncertainty-Weighted Correlation Matrix<br>(Inverse variance weighting)'),
horizontal_spacing=0.15
)
# Regular correlation heatmap
corr_matrix_pct = (corr_df * 100).round(1)
# Create hover text for regular correlations
hover_text_regular = []
for i, bench1 in enumerate(corr_df.columns):
hover_row = []
for j, bench2 in enumerate(corr_df.columns):
if i == j:
hover_row.append(f"{clean_names[i]}<br>Self-correlation: 100%")
else:
corr_val = corr_matrix_pct.iloc[i, j]
if pd.isna(corr_val):
hover_row.append(f"{clean_names[i]} vs {clean_names[j]}<br>No data")
else:
hover_row.append(f"{clean_names[i]} vs {clean_names[j]}<br>Correlation: {corr_val:.1f}%")
hover_text_regular.append(hover_row)
fig.add_trace(go.Heatmap(
z=corr_df.values,
x=clean_names,
y=clean_names,
colorscale='RdBu_r',
zmid=0,
text=corr_matrix_pct.values,
texttemplate="%{text}",
textfont={"size": 8},
hoverinfo='text',
hovertext=hover_text_regular,
showscale=False,
name="Regular"
), row=1, col=1)
# Weighted correlation heatmap
weighted_corr_pct = (weighted_corr_df * 100).round(1)
# Create hover text for weighted correlations
hover_text_weighted = []
for i, bench1 in enumerate(weighted_corr_df.columns):
hover_row = []
for j, bench2 in enumerate(weighted_corr_df.columns):
if i == j:
reliability = weighted_corr_df.iloc[i, j]
if pd.isna(reliability):
hover_row.append(f"{clean_names[i]}<br>Reliability: Unknown")
else:
hover_row.append(f"{clean_names[i]}<br>Reliability: {reliability*100:.1f}%")
else:
corr_val = weighted_corr_pct.iloc[i, j]
if pd.isna(corr_val):
hover_row.append(f"{clean_names[i]} vs {clean_names[j]}<br>No weighted data")
else:
hover_row.append(f"{clean_names[i]} vs {clean_names[j]}<br>Weighted correlation: {corr_val:.1f}%")
hover_text_weighted.append(hover_row)
fig.add_trace(go.Heatmap(
z=weighted_corr_df.values,
x=clean_names,
y=clean_names,
colorscale='RdBu_r',
zmid=0,
text=weighted_corr_pct.values,
texttemplate="%{text}",
textfont={"size": 8},
hoverinfo='text',
hovertext=hover_text_weighted,
showscale=True,
colorbar=dict(title="Correlation", x=1.02),
name="Weighted"
), row=1, col=2)
# Update layout
fig.update_layout(
title=f"{title_prefix}<br><sub>Diagonal shows reliability coefficients for weighted matrix</sub>",
width=1400,
height=700,
font=dict(size=12)
)
# Update axes
fig.update_xaxes(tickangle=45, row=1, col=1)
fig.update_xaxes(tickangle=45, row=1, col=2)
fig.update_yaxes(tickangle=0, row=1, col=1)
fig.update_yaxes(tickangle=0, row=1, col=2)
return fig
def main():
"""Main application."""
# Initialize session state for persistent selections
if 'analysis_mode' not in st.session_state:
st.session_state.analysis_mode = "๐ Overview Dashboard"
if 'use_verified_models' not in st.session_state:
st.session_state.use_verified_models = True
if 'selected_categories' not in st.session_state:
st.session_state.selected_categories = []
if 'filter_zeros' not in st.session_state:
st.session_state.filter_zeros = True
if 'min_models' not in st.session_state:
st.session_state.min_models = 10
st.markdown('<h1 class="main-header">OpenThoughts Evalchemy Benchmark Explorer</h1>',
unsafe_allow_html=True)
# Sidebar
st.sidebar.header("๐๏ธ Controls")
# Analysis mode selection - using session state
analysis_mode = st.sidebar.selectbox(
"Choose Analysis Mode",
["๐ Overview Dashboard", "๐ฅ Correlation Heatmap", "๐ Scatter Plot Explorer",
"๐ฏ Model Performance", "๐ฌ Uncertainty Analysis"],
index=["๐ Overview Dashboard", "๐ฅ Correlation Heatmap", "๐ Scatter Plot Explorer",
"๐ฏ Model Performance", "๐ฌ Uncertainty Analysis"].index(st.session_state.analysis_mode) if st.session_state.analysis_mode != "๐ Statistical Summary" else 0,
key="analysis_mode"
)
# Data filtering options
st.sidebar.subheader("Data Filters")
# Verified models filter - using session state
use_verified_models = st.sidebar.checkbox(
"Include only verified models",
value=st.session_state.use_verified_models,
key="use_verified_models"
)
# Load data with timing (after checkbox is defined)
start_time = time.time()
df = load_comprehensive_data(use_verified_models)
stderr_df = load_stderr_data(use_verified_models)
load_time = time.time() - start_time
# Debug information (hidden in an expander)
# with st.expander("๐ง Debug Information", expanded=False):
# st.write(f"**Data Shape:** {df.shape if not df.empty else 'No data'}")
# st.write(f"**Columns:** {len(df.columns) if not df.empty else 0}")
# st.write(f"**Models:** {len(df.index) if not df.empty else 0}")
# if not df.empty:
# st.write(f"**Sample columns:** {list(df.columns[:5])}")
# st.write(f"**Data types:** {df.dtypes.value_counts().to_dict()}")
# st.write(f"**Missing values per column:** {df.isnull().sum().sum()}")
# st.write(f"**StdErr data available:** {'Yes' if stderr_df is not None else 'No'}")
if df.empty:
st.error("No data available. Please check that the CSV files are properly uploaded and accessible.")
return
# Filter to target benchmarks
df = filter_target_benchmarks(df)
target_benchmarks, benchmark_categories, colors, col_to_category = get_focused_benchmark_mapping()
# Initialize selected categories if empty
if not st.session_state.selected_categories:
st.session_state.selected_categories = list(benchmark_categories.keys())
# Category filter - using session state
selected_categories = st.sidebar.multiselect(
"Select Benchmark Categories",
list(benchmark_categories.keys()),
default=st.session_state.selected_categories,
key="selected_categories"
)
# Filter benchmarks based on selected categories
filtered_benchmarks = []
for category in selected_categories:
for bench_name in benchmark_categories[category]:
actual_name = target_benchmarks.get(bench_name)
if actual_name in df.columns:
filtered_benchmarks.append(actual_name)
if filtered_benchmarks:
df_display = df[filtered_benchmarks].copy()
else:
df_display = df.copy()
# Zero filtering - using session state
filter_zeros = st.sidebar.checkbox(
"Filter out zero/near-zero values",
value=st.session_state.filter_zeros,
key="filter_zeros"
)
if filter_zeros:
for col in df_display.columns:
df_display.loc[(df_display[col] == 0) | (df_display[col] < 0.01), col] = np.nan
# Minimum data points filter
coverage_counts = [df_display[col].notna().sum() for col in df_display.columns]
if coverage_counts:
min_coverage = min(coverage_counts)
max_coverage = max(coverage_counts)
default_min = max(10, min_coverage) # Default to at least 10 or minimum available
# Update session state min_models if it's out of range, but allow minimum of 0
if st.session_state.min_models > max_coverage:
st.session_state.min_models = default_min
min_models = st.sidebar.slider(
"Minimum models per benchmark",
min_value=0, # Always allow 0 minimum to include all benchmarks
max_value=max_coverage,
value=st.session_state.min_models,
help=f"Current range: {min_coverage} to {max_coverage} models. Set to 0 to include all benchmarks.",
key="min_models"
)
else:
min_models = 10
# Apply the minimum models filter
valid_benchmarks = []
for col in df_display.columns:
if df_display[col].notna().sum() >= min_models:
valid_benchmarks.append(col)
df_display = df_display[valid_benchmarks]
# Performance info
# st.sidebar.markdown("---")
# st.sidebar.subheader("โก Performance")
# if load_time > 0:
# st.sidebar.metric("Data Load Time", f"{load_time:.2f}s")
# st.sidebar.metric("Dataset Size", f"{len(df_display)} ร {len(df_display.columns)}")
# if not df_display.empty:
# data_coverage = (df_display.notna().sum().sum() / (len(df_display) * len(df_display.columns))) * 100
# st.sidebar.metric("Data Coverage", f"{data_coverage:.1f}%")
# Main content based on analysis mode
if analysis_mode == "๐ Overview Dashboard":
show_overview_dashboard(df_display, stderr_df)
elif analysis_mode == "๐ฅ Correlation Heatmap":
show_interactive_heatmap(df_display, stderr_df)
elif analysis_mode == "๐ Scatter Plot Explorer":
show_scatter_explorer(df_display, stderr_df)
elif analysis_mode == "๐ฏ Model Performance":
show_model_performance(df_display)
elif analysis_mode == "๐ฌ Uncertainty Analysis":
show_uncertainty_analysis(df_display, stderr_df)
def show_overview_dashboard(df, stderr_df):
"""Show the overview dashboard."""
st.header("๐ Overview Dashboard")
# Key metrics
col1, col2, col3, col4 = st.columns(4)
with col1:
st.metric("Models", len(df))
with col2:
st.metric("Benchmarks", len(df.columns))
with col3:
total_evals = df.notna().sum().sum()
st.metric("Total Evaluations", f"{total_evals:,}")
with col4:
avg_coverage = (df.notna().sum() / len(df)).mean() * 100
st.metric("Avg Coverage", f"{avg_coverage:.1f}%")
# Benchmark coverage chart
st.subheader("Benchmark Coverage")
coverage_data = []
target_benchmarks, benchmark_categories, colors, col_to_category = get_focused_benchmark_mapping()
for col in df.columns:
coverage = int(df[col].notna().sum()) # Ensure integer type
category = col_to_category.get(col, 'Unknown')
clean_name = clean_benchmark_name(col)
# Ensure we have valid data
if coverage >= 0: # Only include valid coverage counts
coverage_data.append({
'Benchmark': str(clean_name), # Ensure string type
'Coverage': coverage,
'Percentage': float(coverage / len(df) * 100), # Ensure float type
'Category': str(category) # Ensure string type
})
if coverage_data: # Only create plot if we have data
coverage_df = pd.DataFrame(coverage_data).sort_values('Coverage', ascending=True)
# Ensure data types are correct
coverage_df['Coverage'] = coverage_df['Coverage'].astype(int)
coverage_df['Percentage'] = coverage_df['Percentage'].astype(float)
coverage_df['Benchmark'] = coverage_df['Benchmark'].astype(str)
coverage_df['Category'] = coverage_df['Category'].astype(str)
# Create bar plot with explicit parameters
fig = px.bar(coverage_df,
x='Coverage',
y='Benchmark',
color='Category',
color_discrete_map=colors,
title="Model Coverage by Benchmark",
labels={'Coverage': 'Number of Models'},
orientation='h',
text='Coverage') # Add text labels to bars
# Update layout for better visibility
fig.update_traces(texttemplate='%{text}', textposition='outside')
fig.update_layout(
height=max(400, len(coverage_df) * 25), # Dynamic height based on data
showlegend=True,
xaxis_title="Number of Models",
yaxis_title="Benchmark"
)
st.plotly_chart(fig, use_container_width=True)
else:
st.warning("No coverage data available to display.")
# Quick correlation insights
st.subheader("Quick Correlation Insights")
corr_matrix = compute_correlations(df, 'kendall')
# Get top correlations
pairs = []
for i, bench1 in enumerate(corr_matrix.columns):
for j, bench2 in enumerate(corr_matrix.columns[i+1:], i+1):
if not pd.isna(corr_matrix.iloc[i, j]):
cat1 = col_to_category.get(bench1, 'Unknown')
cat2 = col_to_category.get(bench2, 'Unknown')
pairs.append((bench1, bench2, corr_matrix.iloc[i, j], cat1, cat2))
pairs.sort(key=lambda x: abs(x[2]), reverse=True)
col1, col2 = st.columns(2)
with col1:
st.markdown("**๐ฅ Top 5 Highest Correlations**")
for i, (bench1, bench2, corr, cat1, cat2) in enumerate(pairs[:5]):
st.write(f"{i+1}. {clean_benchmark_name(bench1)} โ {clean_benchmark_name(bench2)} r = {corr:.3f}")
with col2:
st.markdown("**๐ Category Analysis**")
within_cat = [p[2] for p in pairs if p[3] == p[4]]
across_cat = [p[2] for p in pairs if p[3] != p[4]]
if within_cat:
st.write(f"Within-category avg: {np.mean(within_cat):.3f}")
if across_cat:
st.write(f"Across-category avg: {np.mean(across_cat):.3f}")
st.write(f"Total pairs analyzed: {len(pairs)}")
def show_interactive_heatmap(df, stderr_df):
"""Display interactive correlation heatmap with various options."""
st.header("๐ฅ Correlation Heatmap")
col1, col2, col3 = st.columns(3)
with col1:
# Check if stderr data is available for the uncertainty-aware checkbox
stderr_available = stderr_df is not None
uncertainty_aware = False
if stderr_available:
uncertainty_aware = st.checkbox(
"๐ฌ Uncertainty-Aware Analysis",
value=False,
help="Use measurement uncertainties to weight correlations (requires standard error data)"
)
# Adjust method selector based on uncertainty-aware mode
if uncertainty_aware:
st.selectbox(
"Correlation Method",
["pearson"],
index=0,
disabled=True,
help="**Uncertainty-aware analysis uses Pearson correlations only**\n\nWeighted correlations require parametric methods to properly account for measurement uncertainties."
)
method = "pearson" # Force Pearson for uncertainty-aware analysis
else:
method = st.selectbox(
"Correlation Method",
["kendall", "pearson"],
help="Pearson: Measures linear relationships\nKendall: Measures ordinal relationships"
)
# Additional options
if uncertainty_aware and stderr_df is not None:
st.info("๐ฌ **Uncertainty-Aware Mode**: Correlations are weighted by inverse measurement variance. "
"Diagonal shows reliability coefficients (proportion of variance that is 'true signal' vs measurement error).")
# Match scores with stderr data
available_benchmarks = list(df.columns)
score_to_stderr_mapping = match_scores_with_stderr(df, stderr_df, available_benchmarks)
if len(score_to_stderr_mapping) == 0:
st.warning("No matching standard error data found for the selected benchmarks. "
"Falling back to regular correlation analysis.")
uncertainty_aware = False
else:
# Filter to benchmarks with stderr data
benchmarks_with_stderr = list(score_to_stderr_mapping.keys())
df_stderr = df[benchmarks_with_stderr].copy()
st.success(f"Found standard error data for {len(score_to_stderr_mapping)} benchmarks: "
f"{', '.join([clean_benchmark_name(b) for b in benchmarks_with_stderr])}")
# Align dataframes
common_models = df_stderr.index.intersection(stderr_df.index)
df_aligned = df_stderr.loc[common_models]
stderr_aligned = stderr_df.loc[common_models]
st.write(f"**Analysis scope**: {len(common_models)} models with both scores and standard errors")
# Compute uncertainty-aware correlations
with st.spinner("Computing uncertainty-weighted correlations..."):
corr_df, pvalue_df, weighted_corr_df, weighted_pvalue_df = create_uncertainty_aware_correlation_matrix(
df_aligned, stderr_aligned, score_to_stderr_mapping
)
# Create and display uncertainty-aware heatmap
fig = create_uncertainty_weighted_heatmap_plotly(
weighted_corr_df,
title_prefix=f"Uncertainty-Weighted {method.capitalize()} Correlations"
)
st.plotly_chart(fig, use_container_width=True)
# Show reliability statistics
with st.expander("๐ Reliability Statistics", expanded=False):
st.write("**Benchmark Reliability Coefficients** (proportion of variance that is true signal):")
reliability_data = []
for bench in weighted_corr_df.columns:
diag_val = weighted_corr_df.loc[bench, bench]
if not pd.isna(diag_val):
reliability_data.append({
'Benchmark': clean_benchmark_name(bench),
'Reliability': f"{diag_val*100:.1f}%",
'Category': next((cat for cat, benchs in get_focused_benchmark_mapping()[1].items()
for b in benchs if get_focused_benchmark_mapping()[0].get(b) == bench), 'Unknown')
})
if reliability_data:
reliability_df = pd.DataFrame(reliability_data)
st.dataframe(reliability_df, use_container_width=True)
avg_reliability = pd.to_numeric([d['Reliability'].rstrip('%') for d in reliability_data]).mean() / 100
st.metric("Average Reliability", f"{avg_reliability:.3f} ({avg_reliability*100:.1f}%)")
# Show correlation differences
with st.expander("๐ Impact of Uncertainty Weighting", expanded=False):
st.write("**Correlation Changes** (Weighted - Regular):")
diff_data = []
for i, bench1 in enumerate(corr_df.columns):
for j, bench2 in enumerate(corr_df.columns):
if i < j: # Only upper triangle
regular_corr = corr_df.iloc[i, j]
weighted_corr = weighted_corr_df.iloc[i, j]
if not (pd.isna(regular_corr) or pd.isna(weighted_corr)):
diff = weighted_corr - regular_corr
diff_data.append({
'Benchmark Pair': f"{clean_benchmark_name(bench1)} vs {clean_benchmark_name(bench2)}",
'Regular': f"{regular_corr:.3f}",
'Weighted': f"{weighted_corr:.3f}",
'Difference': f"{diff:+.3f}",
'Abs Difference': abs(diff)
})
if diff_data:
diff_df = pd.DataFrame(diff_data)
# Sort by absolute difference
diff_df_sorted = diff_df.sort_values('Abs Difference', ascending=False)
st.dataframe(diff_df_sorted.drop('Abs Difference', axis=1), use_container_width=True)
# Summary stats
diffs = [float(d['Difference']) for d in diff_data]
col1, col2, col3 = st.columns(3)
with col1:
st.metric("Mean Change", f"{np.mean(diffs):+.4f}")
with col2:
st.metric("Max |Change|", f"{max(abs(d) for d in diffs):.4f}")
with col3:
st.metric("Large Changes (|ฮ| > 0.1)", f"{sum(1 for d in diffs if abs(d) > 0.1)}")
# Regular correlation analysis (original functionality restored)
if df.empty:
st.error("No data available.")
return
# Compute correlation matrix
corr_matrix = compute_correlations(df, method)
if corr_matrix.empty:
st.error("Unable to compute correlations.")
return
# Create and display regular heatmap (original way)
fig = create_interactive_heatmap(corr_matrix, f"{method.capitalize()} Correlation Matrix")
st.plotly_chart(fig, use_container_width=True)
# Correlation statistics (original)
st.subheader("Correlation Statistics")
# Get all off-diagonal correlations (original method)
mask = np.triu(np.ones_like(corr_matrix, dtype=bool), k=1)
corr_values = corr_matrix.where(mask).stack().dropna()
col1, col2, col3, col4 = st.columns(4)
with col1:
st.metric("Mean Correlation", f"{corr_values.mean():.3f}")
with col2:
st.metric("Median Correlation", f"{corr_values.median():.3f}")
with col3:
st.metric("Max Correlation", f"{corr_values.max():.3f}")
with col4:
st.metric("Min Correlation", f"{corr_values.min():.3f}")
# Distribution of correlations (original)
st.subheader("Correlation Distribution")
fig_hist = px.histogram(corr_values,
nbins=20,
title="Distribution of Pairwise Correlations",
labels={'value': 'Correlation Coefficient', 'count': 'Frequency'})
st.plotly_chart(fig_hist, use_container_width=True)
# Methodology note
with st.expander("โน๏ธ About Correlation Methods", expanded=False):
st.markdown("""
**Pearson**: Measures linear relationships. Values range from -1 to +1.
- +1: Perfect positive linear relationship
- 0: No linear relationship
- -1: Perfect negative linear relationship
**Kendall**: Measures ordinal association using concordant/discordant pairs.
- More robust for small samples
- Better for data with many tied values
**Uncertainty-Aware Analysis**: When available, uses measurement standard errors to:
- Weight correlations by inverse measurement variance
- Show reliability coefficients (signal-to-noise ratios) on diagonal
- Provide more accurate correlation estimates for noisy data
""")
def show_scatter_explorer(df, stderr_df):
"""Show the scatter plot explorer with integrated simplified modeling."""
# Initialize session state for scatter plot selections
if 'scatter_x_benchmark' not in st.session_state:
st.session_state.scatter_x_benchmark = df.columns[0] if len(df.columns) > 0 else None
if 'scatter_y_benchmark' not in st.session_state:
st.session_state.scatter_y_benchmark = df.columns[1] if len(df.columns) > 1 else df.columns[0] if len(df.columns) > 0 else None
st.header("๐ Scatter Plot Explorer")
# Benchmark selection
col1, col2 = st.columns(2)
with col1:
# Get current index for x_benchmark
x_index = 0
if st.session_state.scatter_x_benchmark in df.columns:
x_index = list(df.columns).index(st.session_state.scatter_x_benchmark)
x_benchmark = st.selectbox(
"X-axis Benchmark",
df.columns,
index=x_index,
format_func=clean_benchmark_name,
key="scatter_x_benchmark"
)
with col2:
# Get current index for y_benchmark
y_index = 1 if len(df.columns) > 1 else 0
if st.session_state.scatter_y_benchmark in df.columns:
y_index = list(df.columns).index(st.session_state.scatter_y_benchmark)
y_benchmark = st.selectbox(
"Y-axis Benchmark",
df.columns,
index=y_index,
format_func=clean_benchmark_name,
key="scatter_y_benchmark"
)
if x_benchmark and y_benchmark and x_benchmark != y_benchmark:
# Always use the simplified modeling (linear or saturation)
fig, models = create_advanced_scatter_plot(df, x_benchmark, y_benchmark, stderr_df)
if fig and models:
st.plotly_chart(fig, use_container_width=True)
# Show the best model information
best_model = models[0]
st.info(f"**Best fit: {best_model['name']}** (Rยฒ = {best_model['r2']:.3f})")
# Show model interpretation
if best_model['type'] == 'linear':
st.caption("๐ Linear relationship: One benchmark increases proportionally with the other.")
elif best_model['type'] == 'saturation':
if 'direction' in best_model and best_model['direction'] == 'flipped':
st.caption("๐ Inverse saturation: The Y-axis benchmark plateaus as X-axis benchmark increases.")
else:
st.caption("๐ Saturation: One benchmark plateaus as the other increases.")
# Add detailed explanation for saturation fits
with st.expander("โน๏ธ How saturation fitting works", expanded=False):
st.markdown("""
**Saturation Model**: `y = a ร (1 - e^(-bรx)) + c`
**Bidirectional Fitting Process**:
1. **Try both directions**: Fit `y = f(x)` and `x = f(y)`
2. **Choose best fit**: Select direction with higher Rยฒ score
3. **Consistent plotting**: Curve coordinates are computed in the best-fitting direction and plotted identically regardless of axis orientation
**Why this matters**: Some relationships are better modeled in one direction (e.g., performance plateaus as model size increases). The algorithm automatically finds the best direction and ensures the curve looks the same whether you plot X vs Y or Y vs X.
**Parameters**:
- `a`: Maximum change (amplitude)
- `b`: Rate of saturation (higher = faster plateau)
- `c`: Baseline offset
""")
# Add preference reason if applicable
if best_model.get('preferred', False) and 'preference_reason' in best_model:
st.caption(f"โน๏ธ {best_model['preference_reason']}")
else:
st.warning("Insufficient data for modeling (need at least 5 data points).")
# Additional statistics
common_data = df[[x_benchmark, y_benchmark]].dropna()
if len(common_data) >= 3:
col1, col2, col3 = st.columns(3)
# Correlation metrics
pearson_r, pearson_p = pearsonr(common_data[x_benchmark], common_data[y_benchmark])
kendall_r, kendall_p = kendalltau(common_data[x_benchmark], common_data[y_benchmark])
# Format p-values appropriately
def format_pvalue(p):
if p < 0.001:
info = "P-values < 0.001 indicate very strong statistical significance. This results from good sample sizes and meaningful relationships."
return "p < 0.001", info
elif p < 0.05:
info = "P-values < 0.05 indicate moderate statistical significance. This results from reasonable sample sizes and meaningful relationships."
return f"p = {p:.3f}", info
elif p < 0.1:
info = "P-values < 0.1 indicate weak statistical significance. This results from low sample sizes and/or weak relationships."
return f"p = {p:.3f}", info
else:
info = "P-values > 0.1 indicate very weak statistical significance. This results from insufficient sample sizes and/or weak relationships."
return f"p = {p:.3f}", info
with col1:
p_value, info = format_pvalue(pearson_p)
st.metric("Pearson r", f"{pearson_r:.3f}", help="Pearson's r is a parametric measure of linear correlation.")
st.caption(p_value, help=info)
with col2:
p_value, info = format_pvalue(kendall_p)
st.metric("Kendall ฯ", f"{kendall_r:.3f}", help="Kendall's tau is a non-parametric measure of ordinal correlation that is robust to outliers.")
st.caption(p_value, help=info)
with col3:
# Show data table
st.subheader("Data Points")
display_data = common_data.copy()
display_data.columns = [clean_benchmark_name(col) for col in display_data.columns]
st.dataframe(display_data, use_container_width=True)
else:
st.info("Please select two different benchmarks to compare.")
def show_model_performance(df):
"""Show model performance analysis."""
# Initialize session state for model performance selections
if 'model_search_term' not in st.session_state:
st.session_state.model_search_term = ""
if 'use_rank_imputation' not in st.session_state:
st.session_state.use_rank_imputation = True
if 'min_corr' not in st.session_state:
st.session_state.min_corr = 0.3
if 'min_benchmarks_for_ranking' not in st.session_state:
st.session_state.min_benchmarks_for_ranking = 6
st.header("๐ฏ Model Performance Analysis")
# Model search - using session state
search_term = st.text_input(
"๐ Search for models",
value=st.session_state.model_search_term,
placeholder="Enter model name or part of name",
key="model_search_term"
)
# Filter by search term if provided
if search_term:
matching_models = df.index[df.index.str.contains(search_term, case=False, na=False)]
if len(matching_models) > 0:
df_display = df.loc[matching_models]
else:
st.warning(f"No models found matching '{search_term}'")
df_display = df
else:
df_display = df
# Performance ranking
st.subheader("Model Rankings")
# Ranking method controls
col1, col2, col3, col4 = st.columns(4)
with col1:
use_rank_imputation = st.checkbox(
"Use rank-based estimation",
value=st.session_state.use_rank_imputation,
help="Estimate missing rankings using Kendall rank correlations between benchmarks. More fair than simple averaging.",
key="use_rank_imputation"
)
with col2:
if use_rank_imputation:
# Always use Kendall correlation for rank-based estimation
rank_method = "kendall"
st.info("๐ข Using Kendall rank correlation (robust to outliers and tied values)")
else:
rank_method = "none"
with col3:
if use_rank_imputation:
min_corr = st.slider(
"Min correlation threshold",
min_value=0.1,
max_value=0.8,
value=st.session_state.min_corr,
step=0.1,
help="Minimum rank correlation required to use a benchmark for prediction",
key="min_corr"
)
else:
min_corr = 0.3
with col4:
min_benchmarks_for_ranking = st.slider(
"Min benchmarks required",
min_value=1,
max_value=12,
value=st.session_state.min_benchmarks_for_ranking,
step=1,
help="Minimum number of original benchmarks required for a model to be included in ranking",
key="min_benchmarks_for_ranking"
)
# Generate rankings with progress indicator
# Always compute rankings on the FULL dataset to preserve true ranks
if use_rank_imputation and len(df) > 50:
with st.spinner(f"Computing consensus rankings for {len(df)} models..."):
full_ranking_df, rank_matrix, metadata = create_consensus_ranking(
df, # Use full dataset, not df_display
method=rank_method,
use_rank_imputation=use_rank_imputation,
min_benchmarks_for_ranking=min_benchmarks_for_ranking
)
else:
full_ranking_df, rank_matrix, metadata = create_consensus_ranking(
df, # Use full dataset, not df_display
method=rank_method,
use_rank_imputation=use_rank_imputation,
min_benchmarks_for_ranking=min_benchmarks_for_ranking
)
# Filter ranking results to match search if provided
if search_term:
matching_models = df.index[df.index.str.contains(search_term, case=False, na=False)]
if len(matching_models) > 0:
# Filter the ranking to only show matching models, preserving their original ranks
ranking_df = full_ranking_df[full_ranking_df['Full_Model_Name'].isin(matching_models)]
else:
st.warning(f"No models found matching '{search_term}'")
ranking_df = full_ranking_df.head(0) # Empty dataframe
else:
ranking_df = full_ranking_df
# Show filtering information
if search_term:
if len(ranking_df) > 0:
st.info(f"๐ Found {len(ranking_df)} models matching '{search_term}'. "
f"Rankings computed on full dataset of {len(full_ranking_df)} models.")
else:
st.warning(f"No models found matching '{search_term}'")
elif metadata['models_filtered_out'] > 0:
st.info(f"โน๏ธ Filtered out {metadata['models_filtered_out']} models with fewer than {metadata['min_benchmarks_required']} benchmarks. "
f"Ranking {len(ranking_df)} models on {metadata['total_benchmarks']} benchmarks.")
else:
st.success(f"โ
All {len(ranking_df)} models meet the minimum benchmark requirement ({metadata['min_benchmarks_required']} benchmarks).")
# Display ranking information
col1, col2 = st.columns(2)
with col1:
# Change title and behavior based on search term
if search_term:
st.markdown(f"**๐ Models matching '{search_term}'**")
models_to_show = ranking_df # Show all matching models
show_count = len(ranking_df)
else:
st.markdown("**๐ Top 10 Models**")
models_to_show = ranking_df.head(10) # Show only top 10
show_count = min(10, len(ranking_df))
if metadata['imputation_used']:
st.caption(f"๐ฌ Using {metadata['method']} rank correlations with {metadata['total_estimates']} estimated ranks")
else:
st.caption("๐ Using median rank of available rankings")
# Show models with their actual ranking position
# Use a scrollable container if there are many results
if search_term and show_count > 20:
with st.container(height=400): # Scrollable container for long lists
for i, (idx, row) in enumerate(models_to_show.iterrows()):
# Calculate actual rank position in the FULL ranking (1-based)
actual_rank = full_ranking_df.index.get_loc(idx) + 1
estimated_info = f" (+{row['Estimated_Ranks']} est.)" if row['Estimated_Ranks'] > 0 else ""
coverage_info = f"{row['Coverage_Pct']:.0f}%"
if metadata['imputation_used']:
st.write(f"{actual_rank}. **{row['Model']}** (median rank: {row['Consensus_Rank']:.1f})")
st.caption(f" ๐ {row['Original_Benchmarks']}/{row['Total_Benchmarks']} benchmarks{estimated_info}")
else:
st.write(f"{actual_rank}. **{row['Model']}** (median rank: {row['Consensus_Rank']:.1f})")
st.caption(f" ๐ {row['Original_Benchmarks']} benchmarks ({coverage_info} coverage)")
else:
for i, (idx, row) in enumerate(models_to_show.iterrows()):
# Calculate actual rank position in the FULL ranking (1-based)
actual_rank = full_ranking_df.index.get_loc(idx) + 1
estimated_info = f" (+{row['Estimated_Ranks']} est.)" if row['Estimated_Ranks'] > 0 else ""
coverage_info = f"{row['Coverage_Pct']:.0f}%"
if metadata['imputation_used']:
st.write(f"{actual_rank}. **{row['Model']}** (median rank: {row['Consensus_Rank']:.1f})")
st.caption(f" ๐ {row['Original_Benchmarks']}/{row['Total_Benchmarks']} benchmarks{estimated_info}")
else:
st.write(f"{actual_rank}. **{row['Model']}** (median rank: {row['Consensus_Rank']:.1f})")
st.caption(f" ๐ {row['Original_Benchmarks']} benchmarks ({coverage_info} coverage)")
# Show summary when search results are displayed
if search_term:
if show_count == 0:
st.info("No models found matching the search term.")
else:
st.info(f"Found {show_count} model(s) matching '{search_term}'")
with col2:
st.markdown("**๐ Ranking Distribution**")
# Create histogram of consensus ranks
fig = px.histogram(
ranking_df,
x='Consensus_Rank',
nbins=20,
title="Distribution of Consensus Rankings",
labels={'Consensus_Rank': 'Average Rank (lower is better)', 'count': 'Number of Models'}
)
fig.update_layout(height=400)
st.plotly_chart(fig, use_container_width=True)
# Show ranking methodology explanation
if metadata['imputation_used']:
with st.expander("โน๏ธ How Rank-Based Estimation Works"):
st.write(f"""
**Method**: {metadata['method'].title()} rank correlation
**Process**:
1. Convert benchmark scores to ranks (1st, 2nd, 3rd, etc.)
2. Calculate rank correlations between all benchmark pairs
3. For missing data: predict rank using weighted average of available ranks
4. Weights based on rank correlation strength (min threshold: {min_corr})
5. Final consensus rank = median rank across all benchmarks
**Optimizations**:
- Pre-compute correlation matrices for efficiency
- Limit to top 5 most correlated benchmarks per prediction
- Cache results to avoid recomputation
**Upsides**:
- Eliminates bias from models tested only on easier/harder benchmarks
- Uses the correlation structure to make informed predictions
- Focuses on relative ranking rather than absolute scores
- More robust to outliers and scale differences
- Median consensus rank is less affected by extreme outlier rankings
**Statistics**:
- Total rank estimates made: {metadata['total_estimates']:,}
- Models with estimated ranks: {metadata['models_with_estimates']}
""")
else:
with st.expander("โน๏ธ Simple Ranking Method"):
st.write("""
**Method**: Median rank of available rankings
**Limitation**: Models tested on fewer or easier benchmarks may appear artificially better.
**Recommendation**: Enable rank-based estimation for fairer comparisons.
""")
# Model comparison section
st.subheader("Model Comparison")
# Initialize session state for radar chart selections
if 'selected_benchmarks_for_radar' not in st.session_state:
available_benchmarks = list(df_display.columns)
default_benchmarks = available_benchmarks[:min(8, len(available_benchmarks))]
st.session_state.selected_benchmarks_for_radar = default_benchmarks
if 'complete_data_only' not in st.session_state:
st.session_state.complete_data_only = True
if 'selected_models_for_radar' not in st.session_state:
st.session_state.selected_models_for_radar = []
# Benchmark selection for radar chart (always visible)
st.subheader("๐ Benchmark & Model Selection")
col1, col2 = st.columns([2, 1])
with col1:
available_benchmarks = list(df_display.columns)
# Ensure session state benchmarks are still valid
valid_benchmarks = [b for b in st.session_state.selected_benchmarks_for_radar if b in available_benchmarks]
if not valid_benchmarks:
valid_benchmarks = available_benchmarks[:min(8, len(available_benchmarks))]
st.session_state.selected_benchmarks_for_radar = valid_benchmarks
selected_benchmarks_for_radar = st.multiselect(
"Select benchmarks for radar chart",
available_benchmarks,
default=valid_benchmarks,
format_func=clean_benchmark_name,
help="Choose which benchmarks to display in the radar chart",
key="selected_benchmarks_for_radar"
)
with col2:
complete_data_only = st.checkbox(
"Complete data only",
value=st.session_state.complete_data_only,
help="Show only models that have data for ALL selected benchmarks",
key="complete_data_only"
)
# Filter available models based on benchmark selection and complete data requirement
if complete_data_only and selected_benchmarks_for_radar:
# Only show models that have data for all selected benchmarks
models_with_complete_data = []
for model in df_display.index:
has_all_data = True
for benchmark in selected_benchmarks_for_radar:
if pd.isna(df_display.loc[model, benchmark]):
has_all_data = False
break
if has_all_data:
models_with_complete_data.append(model)
available_models_for_selection = models_with_complete_data
models_info = f"({len(available_models_for_selection)} models with complete data)"
else:
available_models_for_selection = df_display.index.tolist()
models_info = f"({len(available_models_for_selection)} models total)"
# Model selection with filtered list - use top ranked models as default
if available_models_for_selection:
# Get top performers from full ranking (not filtered ranking)
top_models_from_ranking = full_ranking_df['Full_Model_Name'].head(5).tolist()
default_selection = [m for m in top_models_from_ranking if m in available_models_for_selection][:3]
# Sort available models by ranking (best to worst)
# Create a ranking order dictionary for quick lookup using FULL ranking
ranking_order = {model: rank for rank, model in enumerate(full_ranking_df['Full_Model_Name'].tolist())}
# Sort available models by their ranking (lower rank number = better performance)
available_models_sorted = sorted(
available_models_for_selection,
key=lambda x: ranking_order.get(x, float('inf')) # Models not in ranking go to end
)
# Ensure session state models are still valid
valid_selected_models = [m for m in st.session_state.selected_models_for_radar if m in available_models_for_selection]
if not valid_selected_models and default_selection:
valid_selected_models = default_selection
st.session_state.selected_models_for_radar = valid_selected_models
else:
default_selection = []
valid_selected_models = []
available_models_sorted = []
selected_models = st.multiselect(
f"Select models to compare {models_info}",
available_models_sorted, # Use sorted list instead of original
default=valid_selected_models,
help="Models are ordered by ranking (best to worst) and filtered based on benchmark selection and complete data setting above",
key="selected_models_for_radar"
)
if selected_models:
comparison_data = df_display.loc[selected_models].T
comparison_data.index = [clean_benchmark_name(idx) for idx in comparison_data.index]
# Performance Radar Chart
st.subheader("๐ Performance Radar Chart")
if not selected_benchmarks_for_radar:
st.info("Please select at least one benchmark above for the radar chart.")
elif len(selected_models) == 0:
st.info("Please select models above to see the radar chart comparison.")
elif len(selected_models) > 10:
st.warning(f"Too many models selected ({len(selected_models)}). Please select 10 or fewer models for the radar chart.")
st.info("๐ก **Tip**: Use the search box above to filter models, then select a smaller subset for comparison.")
else:
# Show radar chart for 1-10 models with optimization
if len(selected_models) > 3 or len(selected_benchmarks_for_radar) > 8:
with st.spinner("Generating radar chart..."):
fig = create_optimized_radar_chart(df_display, selected_models, selected_benchmarks_for_radar)
else:
fig = create_optimized_radar_chart(df_display, selected_models, selected_benchmarks_for_radar)
if fig:
st.plotly_chart(fig, use_container_width=True)
# Add explanation about missing values (only if not using complete data only)
if not complete_data_only:
missing_info = []
for model in selected_models:
missing_benchmarks = []
for benchmark in selected_benchmarks_for_radar:
if pd.isna(df_display.loc[model, benchmark]):
missing_benchmarks.append(clean_benchmark_name(benchmark))
if missing_benchmarks:
missing_info.append(f"โข {model.split('/')[-1]}: {', '.join(missing_benchmarks)}")
if missing_info:
with st.expander("โน๏ธ Missing Data Information"):
st.write("Missing values are shown as 0 in the radar chart:")
for info in missing_info:
st.write(info)
else:
# When complete data only is enabled, all selected models should have complete data
st.info("โ
All selected models have complete data for the chosen benchmarks.")
# Performance tips for large selections
if len(selected_models) > 5:
st.info(f"๐ก **Viewing {len(selected_models)} models**: For better readability, consider selecting fewer models or use the detailed comparison table below.")
# Detailed comparison table
st.subheader("Detailed Comparison")
st.dataframe(comparison_data, use_container_width=True)
def show_uncertainty_analysis(df, stderr_df):
"""Show uncertainty analysis if standard error data is available."""
# Initialize session state for uncertainty analysis selections
if 'uncertainty_x_benchmark' not in st.session_state:
st.session_state.uncertainty_x_benchmark = None
if 'uncertainty_y_benchmark' not in st.session_state:
st.session_state.uncertainty_y_benchmark = None
st.header("๐ฌ Uncertainty Analysis")
if stderr_df is None:
st.warning("Standard error data not available. This analysis requires benchmark_standard_errors.csv")
return
st.info("This section analyzes measurement uncertainty and reliability of benchmark evaluations.")
# Match benchmarks with standard errors
matched_benchmarks = []
for score_col in df.columns:
# Try to find matching stderr column
potential_stderr_cols = [
f"{score_col}_std_err",
f"{score_col.replace('_accuracy', '_accuracy_std_err')}",
f"{score_col.replace('_accuracy_avg', '_accuracy_std_err')}"
]
for stderr_col in potential_stderr_cols:
if stderr_col in stderr_df.columns:
matched_benchmarks.append((score_col, stderr_col))
break
if not matched_benchmarks:
st.warning("No matching standard error data found for the selected benchmarks.")
return
st.success(f"Found standard error data for {len(matched_benchmarks)} benchmarks.")
# Measurement precision analysis
st.subheader("๐ Measurement Precision")
precision_data = []
for score_col, stderr_col in matched_benchmarks:
scores = df[score_col].dropna()
stderrs = stderr_df[stderr_col].dropna()
if len(stderrs) > 0:
mean_stderr = stderrs.mean()
median_stderr = stderrs.median()
# Signal-to-noise ratio
if len(scores) > 0:
signal_std = scores.std()
snr = signal_std / mean_stderr if mean_stderr > 0 else float('inf')
else:
snr = 0
precision_data.append({
'Benchmark': clean_benchmark_name(score_col),
'Mean StdErr': mean_stderr,
'Median StdErr': median_stderr,
'Signal/Noise': snr,
'N Models': len(stderrs)
})
if precision_data:
precision_df = pd.DataFrame(precision_data)
st.dataframe(precision_df, use_container_width=True)
# Visualization
fig = px.scatter(precision_df,
x='Mean StdErr',
y='Signal/Noise',
size='N Models',
hover_name='Benchmark',
title="Measurement Precision: Signal-to-Noise vs Standard Error",
labels={'Signal/Noise': 'Signal-to-Noise Ratio'})
st.plotly_chart(fig, use_container_width=True)
# Uncertainty-aware scatter plot
st.subheader("๐ฏ Uncertainty-Aware Scatter Plot")
# Let user select benchmarks with stderr data
available_benchmarks = [score_col for score_col, _ in matched_benchmarks]
# Initialize session state benchmarks if not set or invalid
if (st.session_state.uncertainty_x_benchmark not in available_benchmarks or
st.session_state.uncertainty_y_benchmark not in available_benchmarks):
st.session_state.uncertainty_x_benchmark = available_benchmarks[0] if available_benchmarks else None
st.session_state.uncertainty_y_benchmark = available_benchmarks[1] if len(available_benchmarks) > 1 else available_benchmarks[0] if available_benchmarks else None
col1, col2 = st.columns(2)
with col1:
# Get current index for x_benchmark
x_index = 0
if st.session_state.uncertainty_x_benchmark in available_benchmarks:
x_index = available_benchmarks.index(st.session_state.uncertainty_x_benchmark)
x_benchmark = st.selectbox(
"X-axis Benchmark (with uncertainty)",
available_benchmarks,
index=x_index,
format_func=clean_benchmark_name,
key="uncertainty_x_benchmark"
)
with col2:
# Get current index for y_benchmark
y_index = 1 if len(available_benchmarks) > 1 else 0
if st.session_state.uncertainty_y_benchmark in available_benchmarks:
y_index = available_benchmarks.index(st.session_state.uncertainty_y_benchmark)
y_benchmark = st.selectbox(
"Y-axis Benchmark (with uncertainty)",
available_benchmarks,
index=y_index,
format_func=clean_benchmark_name,
key="uncertainty_y_benchmark"
)
if x_benchmark and y_benchmark and x_benchmark != y_benchmark:
# Get matched data
matched_data = match_scores_with_stderr(df, stderr_df, {x_benchmark, y_benchmark})
if not matched_data:
st.error("No matching data found between scores and stderr.")
return
# Check if both benchmarks have stderr matches
if x_benchmark not in matched_data or y_benchmark not in matched_data:
missing = []
if x_benchmark not in matched_data:
missing.append(clean_benchmark_name(x_benchmark))
if y_benchmark not in matched_data:
missing.append(clean_benchmark_name(y_benchmark))
st.error(f"No stderr data found for: {', '.join(missing)}")
return
# Get the stderr column names
score_to_stderr_mapping = matched_data
# Create combined dataframe with scores and stderr
combined_data = df[[x_benchmark, y_benchmark]].copy()
stderr_x_col = score_to_stderr_mapping[x_benchmark]
stderr_y_col = score_to_stderr_mapping[y_benchmark]
# Add stderr columns
combined_data[stderr_x_col] = stderr_df[stderr_x_col]
combined_data[stderr_y_col] = stderr_df[stderr_y_col]
# Drop rows with any missing data
matched_data_df = combined_data.dropna()
if len(matched_data_df) < 3:
st.error("Insufficient data points with both scores and stderr (need at least 3).")
return
# Create scatter plot with error bars
if len(matched_data_df) >= 3:
fig = go.Figure()
# Add scatter points with error bars
fig.add_trace(go.Scatter(
x=matched_data_df[x_benchmark],
y=matched_data_df[y_benchmark],
error_x=dict(
type='data',
array=matched_data_df[score_to_stderr_mapping[x_benchmark]],
visible=True
),
error_y=dict(
type='data',
array=matched_data_df[score_to_stderr_mapping[y_benchmark]],
visible=True
),
mode='markers',
marker=dict(size=8, opacity=0.7),
text=matched_data_df.index,
hovertemplate='<b>%{text}</b><br>' +
f'{clean_benchmark_name(x_benchmark)}: %{{x:.3f}} ยฑ %{{error_x:.3f}}<br>' +
f'{clean_benchmark_name(y_benchmark)}: %{{y:.3f}} ยฑ %{{error_y:.3f}}<extra></extra>',
name='Models'
))
# Fit linear regression for reference
from sklearn.linear_model import LinearRegression
X = matched_data_df[x_benchmark].values.reshape(-1, 1)
y = matched_data_df[y_benchmark].values
model = LinearRegression()
model.fit(X, y)
x_line = np.linspace(X.min(), X.max(), 100)
y_line = model.predict(x_line.reshape(-1, 1))
fig.add_trace(go.Scatter(
x=x_line,
y=y_line,
mode='lines',
name=f'Linear Fit (Rยฒ = {model.score(X, y):.3f})',
line=dict(dash='dash', color='red')
))
fig.update_layout(
title=f"Uncertainty-Aware Analysis: {clean_benchmark_name(x_benchmark)} vs {clean_benchmark_name(y_benchmark)}",
xaxis_title=clean_benchmark_name(x_benchmark),
yaxis_title=clean_benchmark_name(y_benchmark),
hovermode='closest'
)
st.plotly_chart(fig, use_container_width=True)
# Uncertainty metrics
st.subheader("๐ Uncertainty Metrics")
col1, col2, col3 = st.columns(3)
with col1:
avg_x_err = matched_data_df[score_to_stderr_mapping[x_benchmark]].mean()
st.metric("Avg X Error", f"{avg_x_err:.4f}")
with col2:
avg_y_err = matched_data_df[score_to_stderr_mapping[y_benchmark]].mean()
st.metric("Avg Y Error", f"{avg_y_err:.4f}")
with col3:
# Signal-to-noise ratio
x_snr = matched_data_df[x_benchmark].std() / avg_x_err
st.metric("X Signal/Noise", f"{x_snr:.2f}")
# Data table
st.subheader("๐ Data with Uncertainties")
display_cols = [x_benchmark, score_to_stderr_mapping[x_benchmark],
y_benchmark, score_to_stderr_mapping[y_benchmark]]
display_data = matched_data_df[display_cols].copy()
# Rename columns for display
new_names = {
x_benchmark: f"{clean_benchmark_name(x_benchmark)} (Score)",
score_to_stderr_mapping[x_benchmark]: f"{clean_benchmark_name(x_benchmark)} (ยฑError)",
y_benchmark: f"{clean_benchmark_name(y_benchmark)} (Score)",
score_to_stderr_mapping[y_benchmark]: f"{clean_benchmark_name(y_benchmark)} (ยฑError)"
}
display_data = display_data.rename(columns=new_names)
st.dataframe(display_data, use_container_width=True)
else:
st.warning("Need at least 3 data points for uncertainty analysis.")
# Linear regression model
def fit_linear_model(x, y):
"""Fit a simple linear model."""
try:
from sklearn.linear_model import LinearRegression
from sklearn.metrics import r2_score, mean_squared_error
X = x.reshape(-1, 1)
model = LinearRegression()
model.fit(X, y)
y_pred = model.predict(X)
r2 = r2_score(y, y_pred)
mse = mean_squared_error(y, y_pred)
# Create prediction function
def predict(x_new):
return model.predict(np.array(x_new).reshape(-1, 1))
return {
'params': [model.coef_[0], model.intercept_],
'r2': r2,
'mse': mse,
'model_func': predict,
'name': f'Linear (slope={model.coef_[0]:.3f})',
'type': 'linear'
}
except Exception as e:
print(f"Linear model fitting failed: {e}")
return None
# Hockey stick model fitting
def fit_hockey_stick_model(x, y):
"""
Fit a hockey stick (saturation) model: y = a * min(x, threshold) + b
"""
def hockey_stick(x, a, b, threshold):
return a * np.minimum(x, threshold) + b
try:
# Initial guess: threshold at 75th percentile, linear fit for slope
x_thresh_guess = np.percentile(x, 75)
linear_fit = np.polyfit(x, y, 1)
# Initial parameters: [slope, intercept, threshold]
p0 = [linear_fit[0], linear_fit[1], x_thresh_guess]
# Fit the model
popt, pcov = curve_fit(hockey_stick, x, y, p0=p0, maxfev=2000)
# Calculate Rยฒ
y_pred = hockey_stick(x, *popt)
r2 = r2_score(y, y_pred)
# Calculate residual standard error
residuals = y - y_pred
mse = np.mean(residuals**2)
return {
'params': popt,
'r2': r2,
'mse': mse,
'model_func': lambda x_new: hockey_stick(x_new, *popt),
'name': f'Hockey Stick (threshold={popt[2]:.3f})',
'param_names': ['slope', 'intercept', 'threshold']
}
except:
return None
def fit_saturation_model(x, y):
"""
Fit saturation model: y = a * (1 - exp(-b * x)) + c
Tries both directions (x vs y and y vs x) and chooses the better fit.
Returns curve coordinates computed in the best direction for consistent plotting.
"""
def saturation(x, a, b, c):
return a * (1 - np.exp(-b * x)) + c
def fit_direction(x_data, y_data, direction_name):
"""Helper function to fit saturation in one direction"""
try:
# Initial guess
y_range = np.max(y_data) - np.min(y_data)
p0 = [y_range, 1.0, np.min(y_data)]
# Fit the model
popt, pcov = curve_fit(saturation, x_data, y_data, p0=p0, maxfev=2000)
# Calculate Rยฒ
y_pred = saturation(x_data, *popt)
r2 = r2_score(y_data, y_pred)
# Calculate residual standard error
residuals = y_data - y_pred
mse = np.mean(residuals**2)
return {
'params': popt,
'r2': r2,
'mse': mse,
'direction': direction_name,
'x_data': x_data,
'y_data': y_data
}
except:
return None
# Try normal direction (x vs y)
normal_fit = fit_direction(x, y, 'normal')
# Try flipped direction (y vs x) - we'll need to invert this later
flipped_fit = fit_direction(y, x, 'flipped')
# Choose the better fit based on Rยฒ
best_fit = None
if normal_fit and flipped_fit:
if normal_fit['r2'] >= flipped_fit['r2']:
best_fit = normal_fit
else:
best_fit = flipped_fit
elif normal_fit:
best_fit = normal_fit
elif flipped_fit:
best_fit = flipped_fit
if best_fit is None:
return None
# Compute curve coordinates in the best-fitting direction
if best_fit['direction'] == 'normal':
# Standard saturation: y = f(x)
x_curve_data = best_fit['x_data'] # This is original x
y_curve_data = best_fit['y_data'] # This is original y
curve_x_range = np.linspace(x_curve_data.min(), x_curve_data.max(), 100)
curve_y_values = saturation(curve_x_range, *best_fit['params'])
# Store curve coordinates in original x,y space
curve_coords = {
'x_coords': curve_x_range,
'y_coords': curve_y_values
}
model_func = lambda x_new: saturation(x_new, *best_fit['params'])
name = f'Saturation (rate={best_fit["params"][1]:.3f})'
else:
# Flipped saturation: curve was fit as x = f(y), need to store in x,y space
y_curve_data = best_fit['x_data'] # This was y when flipped
x_curve_data = best_fit['y_data'] # This was x when flipped
# Generate curve in the fitted direction (y vs x)
y_range = np.linspace(y_curve_data.min(), y_curve_data.max(), 100)
x_fitted = saturation(y_range, *best_fit['params'])
# Store curve coordinates in original x,y space (swap back)
curve_coords = {
'x_coords': x_fitted,
'y_coords': y_range
}
# Create inverse function for predictions
a, b, c = best_fit['params']
def inverse_saturation(x_new):
# Solve: x = a * (1 - exp(-b * y)) + c for y
# Rearranging: y = -ln(1 - (x - c) / a) / b
x_new = np.asarray(x_new)
result = np.full_like(x_new, np.nan, dtype=float)
# Simple domain handling - only compute where mathematically valid
if a > 0 and b > 0:
# Valid domain: c <= x < c + a
valid_mask = (x_new >= c) & (x_new < c + a * 0.999) # Leave small margin from asymptote
if np.any(valid_mask):
x_valid = x_new[valid_mask]
ratio = (x_valid - c) / a
ratio = np.clip(ratio, 1e-10, 0.999) # Avoid log(0) and log(negative)
result[valid_mask] = -np.log(1 - ratio) / b
return result
model_func = inverse_saturation
name = f'Saturation-Inv (rate={best_fit["params"][1]:.3f})'
return {
'params': best_fit['params'],
'r2': best_fit['r2'],
'mse': best_fit['mse'],
'model_func': model_func,
'name': name,
'param_names': ['amplitude', 'rate', 'offset'],
'direction': best_fit['direction'],
'curve_coords': curve_coords # Pre-computed curve coordinates
}
def fit_polynomial_model(x, y, degree=2):
"""
Fit polynomial model of specified degree
"""
try:
# Fit polynomial
poly_coeffs = np.polyfit(x, y, degree)
poly_func = np.poly1d(poly_coeffs)
# Calculate Rยฒ
y_pred = poly_func(x)
r2 = r2_score(y, y_pred)
# Calculate residual standard error
residuals = y - y_pred
mse = np.mean(residuals**2)
return {
'params': poly_coeffs,
'r2': r2,
'mse': mse,
'model_func': lambda x_new: poly_func(x_new),
'name': f'Polynomial (degree={degree})',
'param_names': [f'coeff_{i}' for i in range(degree+1)]
}
except:
return None
def fit_random_forest_model(x, y):
"""
Fit Random Forest model for non-parametric regression with overfitting prevention
"""
try:
# Reshape for sklearn
X = x.values.reshape(-1, 1) if hasattr(x, 'values') else x.reshape(-1, 1)
# Use conservative parameters to prevent overfitting on small datasets
n_samples = len(x)
# Adjust parameters based on dataset size
if n_samples < 30:
# Very conservative for small datasets
rf = RandomForestRegressor(
n_estimators=50, # Fewer trees
max_depth=2, # Very shallow trees
min_samples_split=max(2, n_samples // 10), # At least 10% of data to split
min_samples_leaf=max(1, n_samples // 20), # At least 5% of data per leaf
max_features=1, # Only one feature anyway
random_state=42,
bootstrap=True,
oob_score=True if n_samples > 10 else False
)
elif n_samples < 100:
# Moderately conservative
rf = RandomForestRegressor(
n_estimators=100,
max_depth=3, # Shallow trees
min_samples_split=max(2, n_samples // 8),
min_samples_leaf=max(1, n_samples // 15),
max_features=1,
random_state=42,
bootstrap=True,
oob_score=True
)
else:
# Still conservative but allow more complexity
rf = RandomForestRegressor(
n_estimators=100,
max_depth=4, # Slightly deeper
min_samples_split=max(2, n_samples // 6),
min_samples_leaf=max(2, n_samples // 12),
max_features=1,
random_state=42,
bootstrap=True,
oob_score=True
)
rf.fit(X, y)
# Predict
y_pred = rf.predict(X)
r2 = r2_score(y, y_pred)
mse = np.mean((y - y_pred)**2)
# Use OOB score as a better estimate of performance if available
oob_r2 = getattr(rf, 'oob_score_', None)
display_r2 = oob_r2 if oob_r2 is not None else r2
return {
'model': rf,
'r2': display_r2, # Use OOB score if available to reduce overfitting bias
'r2_train': r2, # Keep training Rยฒ for comparison
'mse': mse,
'model_func': lambda x_new: rf.predict(x_new.reshape(-1, 1) if len(x_new.shape) == 1 else x_new),
'name': f'Random Forest (OOB)' if oob_r2 is not None else 'Random Forest',
'param_names': ['n_estimators', 'max_depth', 'min_samples_split']
}
except:
return None
def detect_clusters_and_fit(x, y, n_clusters=2):
"""
Detect clusters in the data and fit separate models
"""
try:
# Prepare data for clustering
data = np.column_stack([x, y])
scaler = StandardScaler()
data_scaled = scaler.fit_transform(data)
# Perform clustering
kmeans = KMeans(n_clusters=n_clusters, random_state=42, n_init=10)
cluster_labels = kmeans.fit_predict(data_scaled)
# Fit linear models for each cluster
cluster_models = []
total_r2_weighted = 0
total_mse_weighted = 0
total_points = len(x)
for i in range(n_clusters):
mask = cluster_labels == i
if np.sum(mask) >= 3: # Need at least 3 points
x_cluster = x[mask]
y_cluster = y[mask]
# Fit linear model for this cluster
coeffs = np.polyfit(x_cluster, y_cluster, 1)
poly_func = np.poly1d(coeffs)
y_pred_cluster = poly_func(x_cluster)
r2_cluster = r2_score(y_cluster, y_pred_cluster)
mse_cluster = np.mean((y_cluster - y_pred_cluster)**2)
cluster_models.append({
'coeffs': coeffs,
'mask': mask,
'r2': r2_cluster,
'mse': mse_cluster,
'n_points': np.sum(mask)
})
# Weight by cluster size
weight = np.sum(mask) / total_points
total_r2_weighted += r2_cluster * weight
total_mse_weighted += mse_cluster * weight
if len(cluster_models) > 0:
def cluster_predict(x_new):
# For prediction, assign to nearest cluster centroid
result = np.zeros_like(x_new)
for i, model in enumerate(cluster_models):
if i == 0: # For simplicity, use first cluster model for all predictions
result = np.polyval(model['coeffs'], x_new)
break
return result
return {
'cluster_models': cluster_models,
'cluster_labels': cluster_labels,
'r2': total_r2_weighted,
'mse': total_mse_weighted,
'model_func': cluster_predict,
'name': f'Clustered Linear (k={n_clusters})',
'param_names': [f'cluster_{i}_slope' for i in range(len(cluster_models))]
}
except:
pass
return None
def fit_all_models(x, y):
"""
Fit simplified model set: only linear and saturation models.
Returns only the single best model between linear and saturation.
"""
models = []
# Linear model (baseline)
try:
linear_coeffs = np.polyfit(x, y, 1)
linear_func = np.poly1d(linear_coeffs)
y_pred_linear = linear_func(x)
r2_linear = r2_score(y, y_pred_linear)
mse_linear = np.mean((y - y_pred_linear)**2)
linear_model = {
'name': 'Linear',
'r2': r2_linear,
'mse': mse_linear,
'model_func': lambda x_new: linear_func(x_new),
'params': linear_coeffs,
'param_names': ['slope', 'intercept'],
'type': 'linear'
}
models.append(linear_model)
except:
pass
# Saturation model (with bidirectional fitting)
saturation_result = fit_saturation_model(x, y)
if saturation_result:
saturation_result['type'] = 'saturation'
models.append(saturation_result)
if not models:
return []
# Sort by Rยฒ score (descending) and get the best one
models.sort(key=lambda m: m['r2'], reverse=True)
best_model = models[0]
# Apply preference logic
if len(models) > 1:
# Find linear model
linear_model = next((m for m in models if m['type'] == 'linear'), None)
if linear_model:
# Prefer linear model in two cases:
# 1. When overall performance is poor (Rยฒ < 0.5)
# 2. When linear model performs well (Rยฒ > 0.7) and is not significantly worse than best model
if best_model['r2'] < 0.5:
linear_model['name'] = 'Linear'
linear_model['preferred'] = True
linear_model['preference_reason'] = f"Preferred due to poor overall performance (best Rยฒ = {best_model['r2']:.3f} < 0.5)"
return [linear_model]
elif linear_model['r2'] > 0.7 and (best_model['r2'] - linear_model['r2']) < 0.1:
linear_model['name'] = 'Linear'
linear_model['preferred'] = True
linear_model['preference_reason'] = f"Preferred due to good linear fit (Rยฒ = {linear_model['r2']:.3f}) with minimal improvement from saturation model"
return [linear_model]
# Return only the best model
return [best_model]
def create_advanced_scatter_plot(df, x_bench, y_bench, stderr_df=None):
"""Create an advanced scatter plot with single best model fit."""
if x_bench not in df.columns or y_bench not in df.columns:
return None, None
# Get common data
common_data = df[[x_bench, y_bench]].dropna()
if len(common_data) < 5: # Need more data for advanced fitting
return None, None
x_vals = common_data[x_bench].values
y_vals = common_data[y_bench].values
# Fit models (returns only the best one)
models = fit_all_models(x_vals, y_vals)
if not models:
return None, None
best_model = models[0]
# Create figure
fig = go.Figure()
# Add scatter points
fig.add_trace(go.Scatter(
x=x_vals,
y=y_vals,
mode='markers',
text=common_data.index,
hovertemplate=(
"<b>%{text}</b><br>" +
f"{clean_benchmark_name(x_bench)}: %{{x:.3f}}<br>" +
f"{clean_benchmark_name(y_bench)}: %{{y:.3f}}<br>" +
"<extra></extra>"
),
marker=dict(size=8, opacity=0.7, color='steelblue'),
name='Data Points'
))
# Add the best model fit
try:
# Check if we have pre-computed curve coordinates (for saturation models)
if 'curve_coords' in best_model:
x_line_valid = best_model['curve_coords']['x_coords']
y_line_valid = best_model['curve_coords']['y_coords']
# Filter out NaN values for plotting
valid_mask = ~np.isnan(y_line_valid) & ~np.isnan(x_line_valid)
if np.any(valid_mask):
x_line_valid = x_line_valid[valid_mask]
y_line_valid = y_line_valid[valid_mask]
else:
# For other models, generate curve points as before
x_line = np.linspace(x_vals.min(), x_vals.max(), 100)
y_line = best_model['model_func'](x_line)
# Filter out NaN values for plotting
valid_mask = ~np.isnan(y_line)
if np.any(valid_mask):
x_line_valid = x_line[valid_mask]
y_line_valid = y_line[valid_mask]
else:
x_line_valid = y_line_valid = np.array([])
if len(x_line_valid) > 0:
# Format model name and stats
model_name = f"{best_model['name']} (Rยฒ={best_model['r2']:.3f})"
# Style based on model type
if best_model['type'] == 'linear':
line_color = 'red'
line_width = 3
else: # saturation
line_color = 'green'
line_width = 3
# Add star for preferred models
if best_model.get('preferred', False):
model_name = f"{model_name}"
line_color = 'darkblue'
fig.add_trace(go.Scatter(
x=x_line_valid,
y=y_line_valid,
mode='lines',
name=model_name,
line=dict(color=line_color, width=line_width)
))
except Exception as e:
st.warning(f"Could not plot model curve: {e}")
# Update layout
fig.update_layout(
title=f"{clean_benchmark_name(y_bench)} vs {clean_benchmark_name(x_bench)}",
xaxis_title=clean_benchmark_name(x_bench),
yaxis_title=clean_benchmark_name(y_bench),
showlegend=True,
width=800,
height=600
)
return fig, models
def show_advanced_modeling(df, stderr_df):
"""Show the advanced modeling interface for benchmark prediction."""
st.header("๐ค Advanced Benchmark Modeling & Prediction")
st.markdown("""
This section provides advanced modeling capabilities to better understand and predict benchmark relationships.
It handles the different correlation patterns you've identified: hockey stick (saturation), linear, and noisy/clustered patterns.
""")
# Model configuration
st.subheader("๐ ๏ธ Model Configuration")
col1, col2, col3 = st.columns(3)
with col1:
modeling_approach = st.selectbox(
"Choose Modeling Approach",
["Single Pair Analysis", "Multi-Benchmark Prediction", "Ensemble Prediction"],
help="Single Pair: Analyze relationship between two benchmarks\nMulti-Benchmark: Predict one benchmark from multiple others\nEnsemble: Combine multiple models for robust prediction"
)
with col2:
min_data_points = st.slider(
"Minimum Data Points",
min_value=5,
max_value=50,
value=10,
help="Minimum number of models needed for reliable modeling"
)
with col3:
cross_validation = st.checkbox(
"Cross Validation",
value=True,
help="Use cross-validation to assess model generalization"
)
if modeling_approach == "Single Pair Analysis":
show_single_pair_analysis(df, stderr_df, min_data_points, cross_validation)
elif modeling_approach == "Multi-Benchmark Prediction":
show_multi_benchmark_prediction(df, stderr_df, min_data_points, cross_validation)
else: # Ensemble Prediction
show_ensemble_prediction(df, stderr_df, min_data_points, cross_validation)
def show_single_pair_analysis(df, stderr_df, min_data_points, cross_validation):
"""Detailed single pair analysis with all model types."""
st.subheader("๐ Single Pair Deep Analysis")
col1, col2 = st.columns(2)
with col1:
x_benchmark = st.selectbox("Predictor Benchmark", df.columns, format_func=clean_benchmark_name)
with col2:
y_benchmark = st.selectbox("Target Benchmark", df.columns,
index=1 if len(df.columns) > 1 else 0,
format_func=clean_benchmark_name)
if x_benchmark == y_benchmark:
st.warning("Please select different benchmarks for meaningful analysis.")
return
# Get data
common_data = df[[x_benchmark, y_benchmark]].dropna()
if len(common_data) < min_data_points:
st.error(f"Insufficient data: {len(common_data)} points available, {min_data_points} required.")
return
x_vals = common_data[x_benchmark].values
y_vals = common_data[y_benchmark].values
# Fit all models
with st.spinner("Fitting models..."):
models = fit_all_models(x_vals, y_vals)
if not models:
st.error("Failed to fit any models to the data.")
return
# Cross validation if requested
if cross_validation and len(common_data) >= 10:
with st.spinner("Performing cross-validation..."):
cv_results = perform_cross_validation(x_vals, y_vals, models[:5]) # Top 5 models
st.subheader("๐ Cross-Validation Results")
cv_df = pd.DataFrame(cv_results)
st.dataframe(cv_df, use_container_width=True)
# Create visualization
fig, _ = create_advanced_scatter_plot(df, x_benchmark, y_benchmark, stderr_df)
if fig:
st.plotly_chart(fig, use_container_width=True)
# Model comparison
st.subheader("๐ Model Performance Ranking")
model_data = []
for i, model in enumerate(models):
model_data.append({
'Rank': i + 1,
'Model': model['name'],
'Rยฒ Score': f"{model['r2']:.4f}",
'MSE': f"{model['mse']:.6f}",
'Type': model['type'],
'Recommended': get_model_recommendation(model, x_vals, y_vals)
})
model_df = pd.DataFrame(model_data)
st.dataframe(model_df, use_container_width=True)
# Pattern analysis
st.subheader("๐ Pattern Analysis")
best_model = models[0]
pattern_type = analyze_relationship_pattern(x_vals, y_vals, best_model)
pattern_colors = {
'Linear': 'info',
'Hockey Stick': 'warning',
'Saturation': 'warning',
'Non-linear': 'info',
'Clustered': 'error',
'Noisy': 'error'
}
pattern_color = pattern_colors.get(pattern_type, 'info')
if pattern_color == 'warning':
st.warning(f"**Pattern Detected: {pattern_type}**\n\n{get_pattern_explanation(pattern_type)}")
elif pattern_color == 'error':
st.error(f"**Pattern Detected: {pattern_type}**\n\n{get_pattern_explanation(pattern_type)}")
else:
st.info(f"**Pattern Detected: {pattern_type}**\n\n{get_pattern_explanation(pattern_type)}")
# Interactive prediction
st.subheader("๐ฏ Interactive Prediction")
col1, col2, col3 = st.columns(3)
with col1:
selected_model_idx = st.selectbox(
"Choose Model for Prediction",
range(len(models[:5])), # Top 5 models
format_func=lambda i: f"{models[i]['name']} (Rยฒ={models[i]['r2']:.3f})"
)
with col2:
x_input = st.number_input(
f"{clean_benchmark_name(x_benchmark)} Score",
min_value=0.0,
max_value=1.0,
value=0.5,
step=0.01,
format="%.3f"
)
with col3:
if st.button("๐ฎ Predict", type="primary"):
selected_model = models[selected_model_idx]
try:
prediction = selected_model['model_func'](np.array([x_input]))[0]
confidence = calculate_prediction_confidence(selected_model, x_vals, y_vals, x_input)
st.success(f"**Predicted {clean_benchmark_name(y_benchmark)}: {prediction:.3f}**")
st.info(f"Model: {selected_model['name']} | Confidence: {confidence}")
except Exception as e:
st.error(f"Prediction failed: {str(e)}")
def show_multi_benchmark_prediction(df, stderr_df, min_data_points, cross_validation):
"""Multi-benchmark prediction interface."""
st.subheader("๐ฏ Multi-Benchmark Prediction")
st.info("Predict one benchmark using multiple others as predictors.")
# Target selection
target_benchmark = st.selectbox(
"Select Target Benchmark to Predict",
df.columns,
format_func=clean_benchmark_name
)
# Predictor selection
predictor_benchmarks = st.multiselect(
"Select Predictor Benchmarks",
[col for col in df.columns if col != target_benchmark],
default=[col for col in df.columns if col != target_benchmark][:3], # Default first 3
format_func=clean_benchmark_name
)
if not predictor_benchmarks:
st.warning("Please select at least one predictor benchmark.")
return
# Filter data to models with complete data
all_benchmarks = [target_benchmark] + predictor_benchmarks
complete_data = df[all_benchmarks].dropna()
if len(complete_data) < min_data_points:
st.error(f"Insufficient complete data: {len(complete_data)} models available, {min_data_points} required.")
return
# Prepare data
X = complete_data[predictor_benchmarks].values
y = complete_data[target_benchmark].values
# Fit ensemble of models
with st.spinner("Training multi-benchmark models..."):
ensemble_results = fit_multi_benchmark_models(X, y, predictor_benchmarks)
# Display results
st.subheader("๐ Multi-Benchmark Model Performance")
results_data = []
for model_name, result in ensemble_results.items():
results_data.append({
'Model': model_name,
'Rยฒ Score': f"{result['r2']:.4f}",
'MAE': f"{result['mae']:.4f}",
'Feature Importance': result.get('importance', 'N/A')
})
results_df = pd.DataFrame(results_data)
st.dataframe(results_df, use_container_width=True)
# Feature importance visualization
best_model_name = max(ensemble_results.keys(), key=lambda k: ensemble_results[k]['r2'])
best_model = ensemble_results[best_model_name]
if 'feature_importance' in best_model:
st.subheader("๐ Feature Importance")
importance_data = pd.DataFrame({
'Benchmark': [clean_benchmark_name(b) for b in predictor_benchmarks],
'Importance': best_model['feature_importance']
}).sort_values('Importance', ascending=True)
fig_importance = px.bar(
importance_data,
x='Importance',
y='Benchmark',
orientation='h',
title=f"Feature Importance for Predicting {clean_benchmark_name(target_benchmark)}"
)
st.plotly_chart(fig_importance, use_container_width=True)
# Interactive prediction
st.subheader("๐ฏ Multi-Benchmark Prediction")
st.write("Enter scores for predictor benchmarks:")
input_values = {}
cols = st.columns(min(len(predictor_benchmarks), 3))
for i, benchmark in enumerate(predictor_benchmarks):
with cols[i % 3]:
input_values[benchmark] = st.number_input(
clean_benchmark_name(benchmark),
min_value=0.0,
max_value=1.0,
value=float(df[benchmark].median()),
step=0.001,
format="%.3f",
key=f"input_{benchmark}"
)
if st.button("๐ฎ Predict from Multiple Benchmarks", type="primary"):
input_array = np.array([[input_values[b] for b in predictor_benchmarks]])
# Use best model for prediction
prediction = best_model['model'].predict(input_array)[0]
st.success(f"**Predicted {clean_benchmark_name(target_benchmark)}: {prediction:.3f}**")
st.info(f"Using model: {best_model_name} (Rยฒ = {best_model['r2']:.3f})")
def show_ensemble_prediction(df, stderr_df, min_data_points, cross_validation):
"""Ensemble prediction combining multiple approaches."""
st.subheader("๐ญ Ensemble Prediction")
st.info("Combine multiple modeling approaches for robust predictions.")
# Implementation for ensemble prediction
st.write("๐ง Ensemble prediction coming soon! This will combine:")
st.write("- Multiple model types (linear, non-linear, clustering)")
st.write("- Multiple predictor sets")
st.write("- Uncertainty quantification")
st.write("- Robust prediction intervals")
# Helper functions for advanced modeling
def perform_cross_validation(x, y, models, n_folds=5):
"""Perform cross-validation on models."""
from sklearn.model_selection import KFold
cv_results = []
kf = KFold(n_splits=n_folds, shuffle=True, random_state=42)
for model in models:
fold_r2_scores = []
fold_mae_scores = []
for train_idx, test_idx in kf.split(x):
x_train, x_test = x[train_idx], x[test_idx]
y_train, y_test = y[train_idx], y[test_idx]
try:
# Re-fit model on training data
if model['type'] == 'parametric':
if 'Hockey' in model['name']:
fitted_model = fit_hockey_stick_model(x_train, y_train)
elif 'Saturation' in model['name']:
fitted_model = fit_saturation_model(x_train, y_train)
elif 'Polynomial' in model['name']:
degree = 2 if 'degree=2' in model['name'] else 3
fitted_model = fit_polynomial_model(x_train, y_train, degree)
else: # Linear
fitted_model = fit_polynomial_model(x_train, y_train, 1)
if fitted_model:
y_pred = fitted_model['model_func'](x_test)
fold_r2 = r2_score(y_test, y_pred)
fold_mae = mean_absolute_error(y_test, y_pred)
fold_r2_scores.append(fold_r2)
fold_mae_scores.append(fold_mae)
elif model['type'] == 'non_parametric' and 'Random Forest' in model['name']:
# Handle Random Forest models
fitted_model = fit_random_forest_model(x_train, y_train)
if fitted_model:
y_pred = fitted_model['model_func'](x_test)
fold_r2 = r2_score(y_test, y_pred)
fold_mae = mean_absolute_error(y_test, y_pred)
fold_r2_scores.append(fold_r2)
fold_mae_scores.append(fold_mae)
except:
continue
if fold_r2_scores:
cv_results.append({
'Model': model['name'],
'CV Rยฒ Mean': f"{np.mean(fold_r2_scores):.4f}",
'CV Rยฒ Std': f"{np.std(fold_r2_scores):.4f}",
'CV MAE Mean': f"{np.mean(fold_mae_scores):.4f}",
'CV MAE Std': f"{np.std(fold_mae_scores):.4f}"
})
return cv_results
def get_model_recommendation(model, x_vals, y_vals):
"""Get recommendation for when to use this model."""
model_name = model['name']
r2 = model['r2']
# Check if this is a preferred linear model
is_preferred_linear = 'Linear (Preferred' in model_name
has_preference_reason = 'preference_reason' in model
# Check if this is Random Forest with OOB validation
is_rf_oob = 'Random Forest' in model_name and '(OOB)' in model_name
if is_preferred_linear:
if has_preference_reason:
return f"Recommended: {model.get('preference_reason', 'Simple model preferred')}"
else:
return "Recommended: Simple linear model preferred"
elif r2 < 0.3:
return "Poor fit - not recommended"
elif 'Hockey Stick' in model_name:
return "Good for saturation patterns"
elif 'Saturation' in model_name:
return "Good for gradual leveling off"
elif 'Polynomial' in model_name:
return "Good for curved relationships"
elif 'Clustered' in model_name:
return "Good for grouped data"
elif 'Random Forest' in model_name:
if is_rf_oob:
if r2 > 0.7:
return "Excellent non-parametric fit (OOB validated)"
elif r2 > 0.5:
return "Good non-parametric fit (OOB validated)"
else:
return "Moderate non-parametric fit - consider simpler models"
else:
return "Non-parametric model - may overfit on small datasets"
elif 'Linear' in model_name:
if r2 > 0.8:
return "Excellent linear fit - highly recommended"
elif r2 > 0.6:
return "Good linear fit - recommended"
elif r2 > 0.4:
return "Moderate linear fit - simple and interpretable"
else:
return "Weak linear fit - consider other patterns"
elif r2 > 0.8:
return "Excellent fit - highly recommended"
elif r2 > 0.6:
return "Good fit - recommended"
else:
return "Moderate fit - use with caution"
def analyze_relationship_pattern(x_vals, y_vals, best_model):
"""Analyze the relationship pattern between benchmarks."""
model_name = best_model['name']
r2 = best_model['r2']
# Check for different patterns
if 'Hockey Stick' in model_name and r2 > 0.6:
return 'Hockey Stick'
elif 'Saturation' in model_name and r2 > 0.6:
return 'Saturation'
elif 'Clustered' in model_name and r2 > 0.5:
return 'Clustered'
elif r2 < 0.4:
return 'Noisy'
elif 'Polynomial' in model_name and r2 > 0.6:
return 'Non-linear'
else:
return 'Linear'
def get_pattern_explanation(pattern_type):
"""Get explanation for different pattern types."""
explanations = {
'Linear': "The benchmarks show a consistent linear relationship. Performance on one benchmark predicts the other reliably.",
'Hockey Stick': "One benchmark saturates while the other continues improving. This suggests a capability ceiling for one benchmark.",
'Saturation': "The relationship shows gradual leveling off, indicating diminishing returns at higher performance levels.",
'Non-linear': "The relationship is curved but predictable. Consider the full range when making predictions.",
'Clustered': "The data shows distinct groups or clusters. Different model families may follow different patterns.",
'Noisy': "The relationship is weak or highly variable. Predictions should be made with caution and wide confidence intervals."
}
return explanations.get(pattern_type, "Unknown pattern type.")
def calculate_prediction_confidence(model, x_vals, y_vals, x_input):
"""Calculate prediction confidence."""
# Simple confidence based on how close input is to training data
x_min, x_max = x_vals.min(), x_vals.max()
if x_min <= x_input <= x_max:
# Within training range
distance_from_center = abs(x_input - np.median(x_vals))
max_distance = max(abs(x_min - np.median(x_vals)), abs(x_max - np.median(x_vals)))
confidence_score = 1.0 - (distance_from_center / max_distance)
r2_factor = model['r2']
overall_confidence = confidence_score * r2_factor
if overall_confidence > 0.8:
return "High"
elif overall_confidence > 0.5:
return "Medium"
else:
return "Low"
else:
return "Very Low (Extrapolation)"
def fit_multi_benchmark_models(X, y, predictor_names):
"""Fit multiple models for multi-benchmark prediction."""
from sklearn.linear_model import LinearRegression, Ridge
from sklearn.ensemble import RandomForestRegressor
models = {}
# Linear Regression
try:
lr = LinearRegression()
lr.fit(X, y)
y_pred = lr.predict(X)
models['Linear Regression'] = {
'model': lr,
'r2': r2_score(y, y_pred),
'mae': mean_absolute_error(y, y_pred),
'feature_importance': np.abs(lr.coef_),
'importance': 'Linear coefficients'
}
except:
pass
# Ridge Regression
try:
ridge = Ridge(alpha=1.0)
ridge.fit(X, y)
y_pred = ridge.predict(X)
models['Ridge Regression'] = {
'model': ridge,
'r2': r2_score(y, y_pred),
'mae': mean_absolute_error(y, y_pred),
'feature_importance': np.abs(ridge.coef_),
'importance': 'Regularized coefficients'
}
except:
pass
# Random Forest
try:
n_samples, n_features = X.shape
# Adjust Random Forest parameters based on dataset size to prevent overfitting
if n_samples < 30:
# Very conservative for small datasets
rf = RandomForestRegressor(
n_estimators=50,
max_depth=2,
min_samples_split=max(2, n_samples // 8),
min_samples_leaf=max(1, n_samples // 15),
max_features=min(2, n_features), # Limit feature subset
random_state=42,
bootstrap=True,
oob_score=True if n_samples > 10 else False
)
elif n_samples < 100:
# Moderately conservative
rf = RandomForestRegressor(
n_estimators=100,
max_depth=3,
min_samples_split=max(2, n_samples // 6),
min_samples_leaf=max(1, n_samples // 12),
max_features=min(3, max(1, n_features // 2)),
random_state=42,
bootstrap=True,
oob_score=True
)
else:
# Still conservative but allow more complexity
rf = RandomForestRegressor(
n_estimators=100,
max_depth=5,
min_samples_split=max(2, n_samples // 5),
min_samples_leaf=max(2, n_samples // 10),
max_features='sqrt', # Standard sqrt(n_features)
random_state=42,
bootstrap=True,
oob_score=True
)
rf.fit(X, y)
y_pred = rf.predict(X)
# Use OOB score if available as it's a better estimate
oob_r2 = getattr(rf, 'oob_score_', None)
train_r2 = r2_score(y, y_pred)
display_r2 = oob_r2 if oob_r2 is not None else train_r2
models['Random Forest'] = {
'model': rf,
'r2': display_r2,
'r2_train': train_r2, # Keep training Rยฒ for comparison
'mae': mean_absolute_error(y, y_pred),
'feature_importance': rf.feature_importances_,
'importance': f'Tree-based importance {"(OOB validated)" if oob_r2 is not None else ""}'
}
except:
pass
return models
if __name__ == "__main__":
main() |