File size: 6,593 Bytes
d491737
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
# reference
# https://blog.floydhub.com/the-transformer-in-pytorch/
# https://github.com/hyunwoongko/transformer for the transformer architecture
# https://github.com/Whiax/BERT-Transformer-Pytorch/blob/main/train.py (norm layer first)
# https://github.com/karpathy/nanoGPT

import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.optim.lr_scheduler import _LRScheduler
import numpy as np

import copy

def new_gelu(x):
    """
    Implementation of the GELU activation function currently in Google BERT repo (identical to OpenAI GPT).
    Reference: Gaussian Error Linear Units (GELU) paper: https://arxiv.org/abs/1606.08415
    """
    return 0.5 * x * (1.0 + torch.tanh(np.sqrt(2.0 / np.pi) * (x + 0.044715 * torch.pow(x, 3.0))))


# https://github.com/jadore801120/attention-is-all-you-need-pytorch/blob/fec78a687210851f055f792d45300d27cc60ae41/transformer/Modules.py
class ScaledDotProductAttention(nn.Module): 
    def __init__(self, temperature, dropout=0.1):
        super().__init__()
        self.temperature = temperature
        self.dropout = nn.Dropout(dropout)

    def forward(self, q, k, v, mask=None):
        
        attn = torch.matmul(q / self.temperature, k.transpose(-2, -1))

        if mask is not None:
            attn = attn.masked_fill(mask == 0, -1e9)

        attn = F.softmax(attn, dim=-1)
        attn = self.dropout(attn)
        output = torch.matmul(attn, v)

        return output

class CausalMultiHeadAttention(nn.Module):
    def __init__(self, heads, d_model, block_size, dropout=0.1):
        super().__init__()

        self.d_model = d_model
        self.d_k = d_model // heads
        self.h = heads

        self.q_linear = nn.Linear(d_model, d_model, bias=False)
        self.v_linear = nn.Linear(d_model, d_model, bias=False)
        self.k_linear = nn.Linear(d_model, d_model, bias=False)
        

        self.attention = ScaledDotProductAttention(temperature=self.d_k**0.5)

        # self.dropout = nn.Dropout(dropout)
        self.out = nn.Linear(d_model, d_model, bias=False)

        # causal mask
        self.register_buffer("causal_mask", torch.tril(torch.ones(block_size, block_size))
                                .view(1, 1, block_size, block_size))
    
        self.dropout = nn.Dropout(dropout)

    def forward(self, q, k, v):
        bs, T, C = q.size()

        # perform linear operation and  split into h heads
        k = self.k_linear(k).view(bs, -1, self.h, self.d_k)
        q = self.q_linear(q).view(bs, -1, self.h, self.d_k)
        v = self.v_linear(v).view(bs, -1, self.h, self.d_k)

        # transpose to get dimension of  bs * h * sl * d_model

        k = k.transpose(1,2)
        q = q.transpose(1,2)
        v = v.transpose(1,2)

        # causal_mask
        mask = self.causal_mask[:,:,:T,:T]

        # calculate attention
        attn = self.attention(q, k, v, mask)

        # concatenate heads and  put trough final linear layer
        concat = attn.transpose(1,2).contiguous().view(bs, -1, self.d_model)

        output = self.dropout(self.out(concat))

        return output


class FeedForward(nn.Module):
    def __init__(self, d_model, dropout=0.1):
        super().__init__()
        # we set d_ff as a default to 2048
        self.linear_1 = nn.Linear(d_model, 4 * d_model)
        self.dropout = nn.Dropout(dropout)
        self.linear_2 = nn.Linear(4 * d_model, d_model)
    
    def forward(self, x):
        x = self.linear_1(x)
        x = new_gelu(x)
        x = self.linear_2(x)
        x = self.dropout(x)
        return x

# the implementation reference https://www.arxiv-vanity.com/papers/1911.03179/
class Block(nn.Module):
    def __init__(self, d_model, heads, block_size, dropout=0.1):
        super().__init__()
        self.norm_1 = nn.LayerNorm(d_model, eps=1e-6)
        self.norm_2 = nn.LayerNorm(d_model, eps=1e-6)
        self.attn = CausalMultiHeadAttention(heads, d_model, block_size)
        self.ff = FeedForward(d_model)
        # self.dropout_1 = nn.Dropout(dropout)
        # self.dropout_2 = nn.Dropout(dropout)

    def forward(self, x):
        # normalize
        x2 = self.norm_1(x)
        # compute self attention
        x2 = self.attn(x2, x2, x2)
        # x2 = self.dropout_1(x2)
        # residual
        x = x + x2
        # normalize
        x2= self.norm_2(x)
        # positionwise feed forward network
        x2 = self.ff(x2)
        # x2 = self.dropout_2(x2)
        # residual
        x = x + x2
        return x

# layer multiplier
def get_clones(module, N):
    return nn.ModuleList([copy.deepcopy(module)for i in range(N)])

class GPT(nn.Module):
    def __init__(self, vocab_size, d_model, N, heads, block_size=80, dropout=0.1):
        super().__init__()
        self.N = N
        self.embed = nn.Embedding(vocab_size, d_model)
        # self.pe = nn.Embedding(block_size, d_model)
        self.pe = nn.Parameter(torch.zeros(1, block_size, d_model)) 
        self.dropout = nn.Dropout(dropout)
        self.layers = get_clones(Block(d_model, heads, block_size), N)
        self.norm = nn.LayerNorm(d_model, eps=1e-6)
        self.out = nn.Linear(d_model, vocab_size, bias=False)
        self.apply(self._init_weights)

    def _init_weights(self, module):
        if isinstance(module, (nn.Linear, nn.Embedding)):
            module.weight.data.normal_(mean=0.0, std=0.02)
            if isinstance(module, nn.Linear) and module.bias is not None:
                module.bias.data.zero_()
        elif isinstance(module, nn.LayerNorm):
            module.bias.data.zero_()
            module.weight.data.fill_(1.0)
    
    def forward(self, src):
        b, t = src.size()
        # pos = torch.arange(0, t, dtype=torch.long, device=device).unsqueeze(0) # shape (1, t)
        tok_emb = self.embed(src)
        #pos_emb = self.pe(pos)
        position_embeddings = self.pe[:, :t, :] 
        x = tok_emb + position_embeddings
        x = self.dropout(x)
        x = self.norm(x)
        for i in range(self.N):
            x = self.layers[i](x)
        x = self.norm(x)
        x = self.out(x)
        return x


class Scheduler(_LRScheduler):
    def __init__(self, optimizer, dim_embed, warmpup_steps, last_epoch=-1, verbose=False):       
        self.dim_embed = dim_embed
        self.warmup_steps = warmpup_steps
        self.num_param_groups = len(optimizer.param_groups)
        super().__init__(optimizer, last_epoch, verbose)

    def get_lr(self):
        lr = self.dim_embed**(-0.5) * min(self._step_count**(-0.5),self._step_count * self.warmup_steps**(-1.5))
        return [lr] * self.num_param_groups