llmOS-Agent / src /chat.py
tech-envision
Add user-based session tracking
bf45c7d
raw
history blame
3.34 kB
from __future__ import annotations
from typing import List
import json
from ollama import AsyncClient, ChatResponse
from .config import MAX_TOOL_CALL_DEPTH, MODEL_NAME, OLLAMA_HOST
from .db import Conversation, Message, User, _db, init_db
from .log import get_logger
from .schema import Msg
from .tools import add_two_numbers
_LOG = get_logger(__name__)
class ChatSession:
def __init__(self, user: str = "default", host: str = OLLAMA_HOST, model: str = MODEL_NAME) -> None:
init_db()
self._client = AsyncClient(host=host)
self._model = model
self._user, _ = User.get_or_create(username=user)
async def __aenter__(self) -> "ChatSession":
return self
async def __aexit__(self, exc_type, exc, tb) -> None:
if not _db.is_closed():
_db.close()
@staticmethod
def _store_assistant_message(
conversation: Conversation, message: ChatResponse.Message
) -> None:
"""Persist assistant messages, storing tool calls when present."""
if message.tool_calls:
content = json.dumps([c.model_dump() for c in message.tool_calls])
else:
content = message.content or ""
Message.create(conversation=conversation, role="assistant", content=content)
async def ask(self, messages: List[Msg], *, think: bool = True) -> ChatResponse:
return await self._client.chat(
self._model,
messages=messages,
think=think,
tools=[add_two_numbers],
)
async def _handle_tool_calls(
self,
messages: List[Msg],
response: ChatResponse,
conversation: Conversation,
depth: int = 0,
) -> ChatResponse:
if depth >= MAX_TOOL_CALL_DEPTH or not response.message.tool_calls:
return response
for call in response.message.tool_calls:
if call.function.name == "add_two_numbers":
result = add_two_numbers(**call.function.arguments)
messages.append(
{
"role": "tool",
"name": call.function.name,
"content": str(result),
}
)
Message.create(
conversation=conversation,
role="tool",
content=str(result),
)
nxt = await self.ask(messages, think=True)
self._store_assistant_message(conversation, nxt.message)
return await self._handle_tool_calls(
messages, nxt, conversation, depth + 1
)
return response
async def chat(self, prompt: str) -> str:
conversation = Conversation.create(user=self._user)
Message.create(conversation=conversation, role="user", content=prompt)
messages: List[Msg] = [{"role": "user", "content": prompt}]
response = await self.ask(messages)
messages.append(response.message.model_dump())
self._store_assistant_message(conversation, response.message)
_LOG.info("Thinking:\n%s", response.message.thinking or "<no thinking trace>")
final_resp = await self._handle_tool_calls(messages, response, conversation)
return final_resp.message.content