Spaces:
Runtime error
Runtime error
File size: 8,069 Bytes
0e02b97 ec335c4 a8ee91f 7a7b1d3 0e02b97 ccb1848 0e02b97 86c5368 7a7b1d3 86c5368 0e02b97 a8ee91f 66bc790 0e02b97 27b075e bedb8e2 0e02b97 bf45c7d 27b075e 66bc790 27b075e 0e02b97 66bc790 2bae1d8 0e02b97 bedb8e2 2bae1d8 66bc790 bedb8e2 7a7b1d3 66bc790 7a7b1d3 27b075e 10ac258 27b075e ec335c4 7a7b1d3 ec335c4 27b075e ec335c4 0e02b97 10ac258 0e02b97 10ac258 0e02b97 ecc9e42 4c7374d 0e02b97 bedb8e2 0e02b97 008a8e2 a8ee91f 008a8e2 a8ee91f 008a8e2 a8ee91f 008a8e2 a8ee91f 008a8e2 7bd7366 a8ee91f 930ff68 a8ee91f 0e02b97 27b075e 0e02b97 27b075e 0e02b97 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 |
from __future__ import annotations
from typing import List
import json
import asyncio
import shutil
from pathlib import Path
from ollama import AsyncClient, ChatResponse, Message
from .config import (
MAX_TOOL_CALL_DEPTH,
MODEL_NAME,
NUM_CTX,
OLLAMA_HOST,
SYSTEM_PROMPT,
UPLOAD_DIR,
)
from .db import (
Conversation,
Message as DBMessage,
User,
_db,
init_db,
add_document,
)
from .log import get_logger
from .schema import Msg
from .tools import execute_terminal, execute_terminal_async, set_vm
from .vm import VMRegistry
_LOG = get_logger(__name__)
class ChatSession:
def __init__(
self,
user: str = "default",
session: str = "default",
host: str = OLLAMA_HOST,
model: str = MODEL_NAME,
) -> None:
init_db()
self._client = AsyncClient(host=host)
self._model = model
self._user, _ = User.get_or_create(username=user)
self._conversation, _ = Conversation.get_or_create(
user=self._user, session_name=session
)
self._vm = None
self._messages: List[Msg] = self._load_history()
async def __aenter__(self) -> "ChatSession":
self._vm = VMRegistry.acquire(self._user.username)
set_vm(self._vm)
return self
async def __aexit__(self, exc_type, exc, tb) -> None:
set_vm(None)
if self._vm:
VMRegistry.release(self._user.username)
if not _db.is_closed():
_db.close()
def upload_document(self, file_path: str) -> str:
"""Save a document for later access inside the VM.
The file is copied into ``UPLOAD_DIR`` and recorded in the database. The
returned path is the location inside the VM (prefixed with ``/data``).
"""
src = Path(file_path)
if not src.exists():
raise FileNotFoundError(file_path)
dest = Path(UPLOAD_DIR) / self._user.username
dest.mkdir(parents=True, exist_ok=True)
target = dest / src.name
shutil.copy(src, target)
add_document(self._user.username, str(target), src.name)
return f"/data/{src.name}"
def _load_history(self) -> List[Msg]:
messages: List[Msg] = []
for msg in self._conversation.messages.order_by(DBMessage.created_at):
if msg.role == "system":
# Skip persisted system prompts from older versions
continue
if msg.role == "assistant":
try:
calls = json.loads(msg.content)
except json.JSONDecodeError:
messages.append({"role": "assistant", "content": msg.content})
else:
messages.append(
{
"role": "assistant",
"tool_calls": [Message.ToolCall(**c) for c in calls],
}
)
elif msg.role == "user":
messages.append({"role": "user", "content": msg.content})
else:
messages.append({"role": "tool", "content": msg.content})
return messages
@staticmethod
def _store_assistant_message(conversation: Conversation, message: Message) -> None:
"""Persist assistant messages, storing tool calls when present."""
if message.tool_calls:
content = json.dumps([c.model_dump() for c in message.tool_calls])
else:
content = message.content or ""
DBMessage.create(conversation=conversation, role="assistant", content=content)
async def ask(self, messages: List[Msg], *, think: bool = True) -> ChatResponse:
"""Send a chat request, automatically prepending the system prompt."""
if not messages or messages[0].get("role") != "system":
payload = [{"role": "system", "content": SYSTEM_PROMPT}, *messages]
else:
payload = messages
return await self._client.chat(
self._model,
messages=payload,
think=think,
tools=[execute_terminal],
options={"num_ctx": NUM_CTX},
)
async def _handle_tool_calls(
self,
messages: List[Msg],
response: ChatResponse,
conversation: Conversation,
depth: int = 0,
) -> ChatResponse:
while depth < MAX_TOOL_CALL_DEPTH and response.message.tool_calls:
for call in response.message.tool_calls:
if call.function.name != "execute_terminal":
_LOG.warning("Unsupported tool call: %s", call.function.name)
result = f"Unsupported tool: {call.function.name}"
messages.append(
{
"role": "tool",
"name": call.function.name,
"content": result,
}
)
DBMessage.create(
conversation=conversation,
role="tool",
content=result,
)
continue
exec_task = asyncio.create_task(
execute_terminal_async(**call.function.arguments)
)
follow_task = asyncio.create_task(self.ask(messages, think=True))
done, _ = await asyncio.wait(
{exec_task, follow_task},
return_when=asyncio.FIRST_COMPLETED,
)
if exec_task in done:
follow_task.cancel()
try:
await follow_task
except asyncio.CancelledError:
pass
result = await exec_task
messages.append(
{
"role": "tool",
"name": call.function.name,
"content": result,
}
)
DBMessage.create(
conversation=conversation,
role="tool",
content=result,
)
nxt = await self.ask(messages, think=True)
self._store_assistant_message(conversation, nxt.message)
response = nxt
else:
followup = await follow_task
self._store_assistant_message(conversation, followup.message)
messages.append(followup.message.model_dump())
result = await exec_task
messages.append(
{
"role": "tool",
"name": call.function.name,
"content": result,
}
)
DBMessage.create(
conversation=conversation,
role="tool",
content=result,
)
nxt = await self.ask(messages, think=True)
self._store_assistant_message(conversation, nxt.message)
response = nxt
depth += 1
return response
async def chat(self, prompt: str) -> str:
DBMessage.create(conversation=self._conversation, role="user", content=prompt)
self._messages.append({"role": "user", "content": prompt})
response = await self.ask(self._messages)
self._messages.append(response.message.model_dump())
self._store_assistant_message(self._conversation, response.message)
_LOG.info("Thinking:\n%s", response.message.thinking or "<no thinking trace>")
final_resp = await self._handle_tool_calls(
self._messages, response, self._conversation
)
return final_resp.message.content
|