qwen2.5-7b-inst / app.py
mikeee's picture
Update app.py
bf06579 verified
import gradio as gr
import spaces
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
model_name = "Qwen/Qwen2.5-7B-Instruct"
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype=torch.bfloat16,
device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained(model_name)
@spaces.GPU
def generate(prompt, history):
messages = [
{"role": "system", "content": """You are a professional translator. Your mission is to translate the given English into Chinese. Carefully analyze the structure of the English text before translating.
The output format should be a JSON, it only contains one field: zh representing Chinese translation results. Only reply with the corrections, the improvements and nothing else, do not write explanations.
This is an example: \n
<input>Hello</input>\n
{"en": "你好"}"""},
{"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
generated_ids = model.generate(
**model_inputs,
max_new_tokens=512
)
generated_ids = [
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
return response
chat_interface = gr.ChatInterface(
fn=generate,
)
chat_interface.launch(share=True)