freemt commited on
Commit
4dc9e2b
·
1 Parent(s): 8ddf994

Update comment out fusing

Browse files
Files changed (4) hide show
  1. app-diffusers.py +1 -1
  2. app.py +5 -1
  3. example.py +2 -2
  4. example1.py +2 -2
app-diffusers.py CHANGED
@@ -14,7 +14,7 @@ except ModuleNotFoundError:
14
  import PIL
15
  from diffusers import DiffusionPipeline
16
 
17
- ldm = DiffusionPipeline.from_pretrained("fusing/latent-diffusion-text2im-large")
18
 
19
  generator = torch.manual_seed(42)
20
 
 
14
  import PIL
15
  from diffusers import DiffusionPipeline
16
 
17
+ ldm = DiffusionPipeline.from_pretrained("fu sing/latent-diffusion-text2im-large")
18
 
19
  generator = torch.manual_seed(42)
20
 
app.py CHANGED
@@ -25,7 +25,11 @@ def generate_images(phrase: str, steps: int = 125):
25
  num_images = 1
26
  diversity = 6
27
 
28
- image_bytes = image_gen(generated_text, steps, width, height, num_images, diversity)
 
 
 
 
29
 
30
  # Algo from spaces/Gradio-Blocks/latent_gpt2_story/blob/main/app.py
31
  # generated_images = []
 
25
  num_images = 1
26
  diversity = 6
27
 
28
+ try:
29
+ image_bytes = image_gen(generated_text, steps, width, height, num_images, diversity)
30
+ except Exception as exc:
31
+ logger.error(exc)
32
+ return img, f"phrase: {phrase}, errors: str(exc). Try again."
33
 
34
  # Algo from spaces/Gradio-Blocks/latent_gpt2_story/blob/main/app.py
35
  # generated_images = []
example.py CHANGED
@@ -7,8 +7,8 @@ import tqdm
7
  torch_device = "cuda" if torch.cuda.is_available() else "cpu"
8
 
9
  # 1. Load models
10
- scheduler = DDIMScheduler.from_config("fusing/ddpm-celeba-hq", tensor_format="pt")
11
- unet = UNetUnconditionalModel.from_pretrained("fusing/ddpm-celeba-hq", ddpm=True).to(torch_device)
12
 
13
  # 2. Sample gaussian noise
14
  generator = torch.manual_seed(23)
 
7
  torch_device = "cuda" if torch.cuda.is_available() else "cpu"
8
 
9
  # 1. Load models
10
+ scheduler = DDIMScheduler.from_config("fu sing/ddpm-celeba-hq", tensor_format="pt")
11
+ unet = UNetUnconditionalModel.from_pretrained("fu sing/ddpm-celeba-hq", ddpm=True).to(torch_device)
12
 
13
  # 2. Sample gaussian noise
14
  generator = torch.manual_seed(23)
example1.py CHANGED
@@ -11,11 +11,11 @@ https://github.com/CompVis/latent-diffusion/blob/main/scripts/txt2img.py
11
  https://medium.com/tag/diffusion-models
12
 
13
  !pip install einops
14
-
15
  """
16
  from diffusers import DiffusionPipeline
17
 
18
- ldm = DiffusionPipeline.from_pretrained("fusing/latent-diffusion-text2im-large")
19
 
20
  generator = torch.manual_seed(42)
21
 
 
11
  https://medium.com/tag/diffusion-models
12
 
13
  !pip install einops
14
+
15
  """
16
  from diffusers import DiffusionPipeline
17
 
18
+ ldm = DiffusionPipeline.from_pretrained("fu sing/latent-diffusion-text2im-large")
19
 
20
  generator = torch.manual_seed(42)
21