Spaces:
Runtime error
Runtime error
"""See https://huggingface.co/spaces/Gradio-Blocks/Story-to-video/blob/main/app.py.""" | |
import base64 | |
import io | |
import logzero | |
import os | |
import re | |
import time | |
from random import choice, choices | |
import gradio as gr | |
import translators as ts | |
from fastlid import fastlid | |
from logzero import logger | |
from PIL import Image # opencv-python | |
from tenacity import retry | |
from tenacity.stop import stop_after_attempt, stop_after_delay | |
# from PIL import Image | |
# from transformers import AutoTokenizer, AutoModelForSeq2SeqLM,pipeline | |
# import requests | |
# import torch | |
image_gen = gr.Interface.load("spaces/multimodalart/latentdiffusion") | |
# image_gen = gr.Interface.load("huggingface/multimodalart/latentdiffusion") | |
os.environ["TZ"] = "Asia/Shanghai" | |
try: | |
time.tzset() | |
except Exception: | |
... # Windows | |
loglevel = 10 # change to 20 to switch off debug | |
logzero.loglevel(loglevel) | |
examples_ = [ | |
"黄金在河里流淌,宝石遍地,空中铺满巨大的彩虹。", | |
"蓝色的夜,森林中好多萤火虫", | |
"黑云压城城欲摧 ,甲光向日金鳞开。", | |
"季姬寂,集鸡,鸡即棘鸡。棘鸡饥叽,季姬及箕稷济鸡。", | |
"an apple", | |
"a cat", | |
"blue moon", | |
"metaverse", | |
] | |
# @retry(stop=stop_after_attempt(5)) | |
def tr_( | |
text: str, | |
from_language="auto", | |
to_language="en", | |
) -> str: | |
"""Wrap [ts.deepl, ts.baidu, ts.google] with tenacity. | |
not working: sogou; ?tencent | |
""" | |
cand = [ts.baidu, ts.youdao, ts.google] | |
for tr in [ts.deepl] + choices(cand, k=len(cand)): | |
try: | |
res = tr( | |
text, | |
from_language=from_language, | |
to_language=to_language, | |
) | |
logger.info(" api used: %s", tr.__name__) | |
tr_.api_used = tr.__name__ | |
break | |
except Exception: | |
continue | |
else: | |
res = "Something is probably wrong, ping dev to fix it if you like." | |
return res | |
def generate_images(phrase: str, steps: int = 125): | |
if not phrase.strip(): | |
phrase = choice(examples_) | |
generated_text = phrase | |
detected = "en" | |
extra_info = "" | |
try: | |
detected = fastlid(phrase)[0] | |
except Exception as exc: | |
logger.error(exc) | |
logzero.loglevel(loglevel) | |
logger.debug("phrase: %s, deteted: %s", phrase, detected) | |
# safeguard short Chinese phrases | |
if len(phrase) <= 10 and re.search(r"[一-龟]+", phrase): | |
detected = "zh" | |
logger.debug(" safeguard branch ") | |
if detected not in ["en"]: | |
try: | |
generated_text = tr_( | |
phrase, | |
detected, | |
"en", | |
) | |
extra_info = f"({tr_.api_used}: {generated_text})" | |
except Exception as exc: | |
logger.error(exc) | |
return None, f"{phrase:}, errors: {str(exc)}" | |
# steps = 125 | |
width = 256 | |
height = 256 | |
num_images = 4 | |
num_images = 1 | |
diversity = 6 | |
try: | |
image_bytes = image_gen( | |
generated_text, steps, width, height, num_images, diversity | |
) | |
except Exception as exc: | |
logger.error(exc) | |
return None, f"phrase: {phrase}, errors: {str(exc)}. Try again." | |
# Algo from spaces/Gradio-Blocks/latent_gpt2_story/blob/main/app.py | |
# generated_images = [] | |
img = None | |
err_msg = f"{phrase} {extra_info}" | |
for image in image_bytes[1]: | |
image_str = image[0] | |
try: | |
image_str = image_str.replace("data:image/png;base64,", "") | |
except Exception as exc: | |
logger.error(exc) | |
err_msg = str(exc) | |
return None, f"errors: {err_msg}. Try again." | |
decoded_bytes = base64.decodebytes(bytes(image_str, "utf-8")) | |
img = Image.open(io.BytesIO(decoded_bytes)) | |
# generated_images.append(img) | |
# return generated_images | |
return img, err_msg | |
# examples = [["an apple", 125], ["Donald Trump", 125]] | |
examples = [list(_) for _ in zip(examples_, [125] * len(examples_))] | |
inputs = [ | |
# "text", | |
gr.Text(value="a dog with a funny hat"), | |
gr.Slider(minimum=2, maximum=250, value=115, step=5), | |
] | |
iface = gr.Interface( | |
generate_images, | |
inputs, | |
# ["image", gr.Text(value="", label="phrase")], | |
[gr.Image(label=""), gr.Text(value="", label="phrase")], | |
examples=examples, | |
cache_examples=False, | |
allow_flagging="never", | |
) | |
iface.launch(enable_queue=True) | |