Commit
·
d2d7682
1
Parent(s):
85ef28f
修正查詢
Browse files- backend/services/enhanced_product_service.py +21 -11
- test_quick_fix.py +151 -0
backend/services/enhanced_product_service.py
CHANGED
@@ -51,19 +51,29 @@ class EnhancedProductService:
|
|
51 |
joinedload(Product.category)
|
52 |
).filter(Product.is_deleted == False)
|
53 |
|
54 |
-
# 關鍵字搜尋 -
|
55 |
if query_text:
|
56 |
logger.info(f"🔑 使用關鍵字搜尋: '{query_text}'")
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
67 |
|
68 |
# 分類篩選
|
69 |
if category_name:
|
|
|
51 |
joinedload(Product.category)
|
52 |
).filter(Product.is_deleted == False)
|
53 |
|
54 |
+
# 關鍵字搜尋 - 使用智能關鍵字提取
|
55 |
if query_text:
|
56 |
logger.info(f"🔑 使用關鍵字搜尋: '{query_text}'")
|
57 |
+
|
58 |
+
# 使用智能關鍵字提取方法
|
59 |
+
search_terms = self._extract_keywords(query_text)
|
60 |
+
logger.info(f"📝 智能提取的關鍵字: {search_terms}")
|
61 |
+
|
62 |
+
if search_terms:
|
63 |
+
# 建立搜尋條件 - 使用 OR 邏輯
|
64 |
+
search_filters = []
|
65 |
+
for term in search_terms:
|
66 |
+
search_filters.extend([
|
67 |
+
Product.productName.ilike(f"%{term}%"),
|
68 |
+
Product.productCode.ilike(f"%{term}%"),
|
69 |
+
Product.barcode.ilike(f"%{term}%")
|
70 |
+
])
|
71 |
+
|
72 |
+
if search_filters:
|
73 |
+
query = query.filter(or_(*search_filters))
|
74 |
+
logger.info(f"✅ 應用了 {len(search_filters)} 個搜尋條件")
|
75 |
+
else:
|
76 |
+
logger.warning(f"⚠️ 沒有提取到有效關鍵字")
|
77 |
|
78 |
# 分類篩選
|
79 |
if category_name:
|
test_quick_fix.py
ADDED
@@ -0,0 +1,151 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
快速測試關鍵字提取修復
|
3 |
+
"""
|
4 |
+
|
5 |
+
def test_keyword_extraction_fix():
|
6 |
+
"""測試修復後的關鍵字提取"""
|
7 |
+
|
8 |
+
def extract_keywords_fixed(query_text: str):
|
9 |
+
"""修復後的關鍵字提取邏輯"""
|
10 |
+
# 移除常見的查詢詞彙
|
11 |
+
stop_words = ['推薦', '有沒有', '是否有', '請問', '想要', '需要', '找', '查詢', '搜尋', '還有嗎', '還有', '嗎', '可以']
|
12 |
+
|
13 |
+
# 清理查詢文字
|
14 |
+
cleaned_text = query_text.replace('?', '').replace('?', '').strip()
|
15 |
+
|
16 |
+
# 先嘗試提取核心商品詞彙
|
17 |
+
core_product_words = ['貓砂', '狗糧', '寵物', '商品', '產品', '貓', '狗', '犬', '礦砂']
|
18 |
+
extracted_core_words = []
|
19 |
+
|
20 |
+
for core_word in core_product_words:
|
21 |
+
if core_word in cleaned_text:
|
22 |
+
extracted_core_words.append(core_word)
|
23 |
+
|
24 |
+
# 分割並清理關鍵字
|
25 |
+
words = cleaned_text.split()
|
26 |
+
keywords = []
|
27 |
+
|
28 |
+
for word in words:
|
29 |
+
if word not in stop_words and len(word) > 1:
|
30 |
+
keywords.append(word)
|
31 |
+
|
32 |
+
# 合併核心詞彙和分割的關鍵字
|
33 |
+
all_keywords = list(set(extracted_core_words + keywords))
|
34 |
+
|
35 |
+
# 如果沒有有效關鍵字,使用清理後的文字
|
36 |
+
if not all_keywords:
|
37 |
+
all_keywords = [cleaned_text]
|
38 |
+
|
39 |
+
# 擴展相關關鍵字
|
40 |
+
expanded_keywords = []
|
41 |
+
for keyword in all_keywords:
|
42 |
+
expanded_keywords.append(keyword)
|
43 |
+
|
44 |
+
# 貓砂相關擴展
|
45 |
+
if '貓砂' in keyword or '貓' in keyword:
|
46 |
+
expanded_keywords.extend(['礦砂', '豆腐砂', '水晶砂', '木屑砂', 'litter', '貓砂'])
|
47 |
+
|
48 |
+
# 狗糧相關擴展
|
49 |
+
if '狗糧' in keyword or '狗' in keyword:
|
50 |
+
expanded_keywords.extend(['犬糧', '犬種', '狗食', 'dog'])
|
51 |
+
|
52 |
+
# 寵物相關擴展
|
53 |
+
if '寵物' in keyword:
|
54 |
+
expanded_keywords.extend(['貓', '狗', '犬', 'pet', 'cat'])
|
55 |
+
|
56 |
+
# 商品相關擴展
|
57 |
+
if '商品' in keyword or '產品' in keyword:
|
58 |
+
expanded_keywords.extend(['貓砂', '狗糧', '寵物', '食品', '用品'])
|
59 |
+
|
60 |
+
# 去除重複並返回
|
61 |
+
unique_keywords = list(set(expanded_keywords))
|
62 |
+
|
63 |
+
return unique_keywords, extracted_core_words
|
64 |
+
|
65 |
+
print("🔧 測試關鍵字提取修復")
|
66 |
+
print("=" * 50)
|
67 |
+
|
68 |
+
# 測試實際的問題查詢
|
69 |
+
test_queries = [
|
70 |
+
"貓砂還有嗎?",
|
71 |
+
"請問貓砂還有嗎?"
|
72 |
+
]
|
73 |
+
|
74 |
+
for query in test_queries:
|
75 |
+
print(f"\n查詢: '{query}'")
|
76 |
+
keywords, core_words = extract_keywords_fixed(query)
|
77 |
+
print(f" 核心詞彙: {core_words}")
|
78 |
+
print(f" 最終關鍵字: {keywords}")
|
79 |
+
|
80 |
+
# 檢查是否包含預期的關鍵字
|
81 |
+
if '貓砂' in keywords and '礦砂' in keywords:
|
82 |
+
print(" ✅ 包含預期的貓砂相關關鍵字")
|
83 |
+
else:
|
84 |
+
print(" ❌ 缺少預期的關鍵字")
|
85 |
+
|
86 |
+
def test_search_logic_simulation():
|
87 |
+
"""模擬搜尋邏輯"""
|
88 |
+
|
89 |
+
print(f"\n🔍 模擬搜尋邏輯")
|
90 |
+
print("=" * 50)
|
91 |
+
|
92 |
+
# 實際商品資料
|
93 |
+
products = [
|
94 |
+
{
|
95 |
+
"productName": "美國極冠貓砂 薰衣草12kg",
|
96 |
+
"productCode": "TL-03",
|
97 |
+
"stock": 48
|
98 |
+
},
|
99 |
+
{
|
100 |
+
"productName": "Shovel well豪好鏟 破碎型礦砂",
|
101 |
+
"productCode": "SW-06-01",
|
102 |
+
"stock": 50
|
103 |
+
}
|
104 |
+
]
|
105 |
+
|
106 |
+
# 修復後的關鍵字
|
107 |
+
keywords = ['貓砂', '礦砂', '豆腐砂', '水晶砂', '木屑砂', 'litter', '貓']
|
108 |
+
|
109 |
+
print(f"使用關鍵字: {keywords}")
|
110 |
+
|
111 |
+
matched_products = []
|
112 |
+
|
113 |
+
for product in products:
|
114 |
+
product_name_lower = product["productName"].lower()
|
115 |
+
product_code_lower = product["productCode"].lower()
|
116 |
+
|
117 |
+
# 檢查是否匹配任一關鍵字
|
118 |
+
for keyword in keywords:
|
119 |
+
keyword_lower = keyword.lower()
|
120 |
+
|
121 |
+
if (keyword_lower in product_name_lower or
|
122 |
+
keyword_lower in product_code_lower):
|
123 |
+
matched_products.append(product)
|
124 |
+
print(f"✅ 匹配: {product['productName']} (關鍵字: '{keyword}')")
|
125 |
+
break
|
126 |
+
|
127 |
+
print(f"\n總共匹配 {len(matched_products)} 個商品")
|
128 |
+
|
129 |
+
if len(matched_products) >= 2:
|
130 |
+
print("✅ 修復成功!應該能找到貓砂商品了")
|
131 |
+
else:
|
132 |
+
print("❌ 仍有問題需要進一步調試")
|
133 |
+
|
134 |
+
def main():
|
135 |
+
"""主函數"""
|
136 |
+
print("🚀 快速測試關鍵字提取修復")
|
137 |
+
print("=" * 60)
|
138 |
+
|
139 |
+
test_keyword_extraction_fix()
|
140 |
+
test_search_logic_simulation()
|
141 |
+
|
142 |
+
print("\n" + "=" * 60)
|
143 |
+
print("✅ 測試完成!")
|
144 |
+
print("\n💡 修復重點:")
|
145 |
+
print("1. search_products_advanced 現在使用 _extract_keywords 方法")
|
146 |
+
print("2. 不再直接使用 query_text.split()")
|
147 |
+
print("3. 應用 OR 邏輯搜尋條件")
|
148 |
+
print("4. 重啟服務後應該能正常工作")
|
149 |
+
|
150 |
+
if __name__ == "__main__":
|
151 |
+
main()
|