File size: 9,738 Bytes
0254ce4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 |
"""
緊急調試:貓砂查詢問題
"""
def debug_keyword_expansion():
"""調試關鍵字擴展邏輯"""
def extract_keywords_with_expansion(query_text: str):
"""擴展版關鍵字提取"""
# 移除常見的查詢詞彙
stop_words = ['推薦', '有沒有', '是否有', '請問', '想要', '需要', '找', '查詢', '搜尋', '還有嗎', '?', '?']
# 分割並清理關鍵字
words = query_text.replace('?', '').replace('?', '').split()
keywords = [word for word in words if word not in stop_words and len(word) > 1]
# 擴展相關關鍵字
expanded_keywords = []
for keyword in keywords:
expanded_keywords.append(keyword)
# 貓砂相關擴展
if '貓砂' in keyword or '貓' in keyword:
expanded_keywords.extend(['礦砂', '豆腐砂', '水晶砂', '木屑砂', 'litter'])
# 狗糧相關擴展
if '狗糧' in keyword or '狗' in keyword:
expanded_keywords.extend(['犬糧', '犬種', '狗食', 'dog'])
# 寵物相關擴展
if '寵物' in keyword:
expanded_keywords.extend(['貓', '狗', '犬', 'pet', 'cat'])
return expanded_keywords if expanded_keywords else [query_text.strip()]
print("🔍 調試關鍵字擴展邏輯")
print("=" * 50)
test_query = "貓砂還有嗎?"
print(f"原始查詢: '{test_query}'")
keywords = extract_keywords_with_expansion(test_query)
print(f"擴展關鍵字: {keywords}")
return keywords
def debug_product_matching():
"""調試商品匹配邏輯"""
# 實際商品資料
products = [
{
"id": 2,
"productCode": "SW-06-01",
"productName": "Shovel well豪好鏟 破碎型礦砂",
"stock": 50,
"category_id": 1
},
{
"id": 3,
"productCode": "TL-03",
"productName": "美國極冠貓砂 薰衣草12kg",
"stock": 48,
"category_id": 1
}
]
print("\n🛍️ 調試商品匹配邏輯")
print("=" * 50)
keywords = debug_keyword_expansion()
print(f"\n商品資料:")
for product in products:
print(f" - {product['productName']}")
print(f"\n匹配測試:")
for keyword in keywords:
print(f"\n關鍵字: '{keyword}'")
matches = []
for product in products:
product_name_lower = product["productName"].lower()
product_code_lower = product["productCode"].lower()
keyword_lower = keyword.lower()
if (keyword_lower in product_name_lower or
keyword_lower in product_code_lower):
matches.append(product)
print(f" ✅ 匹配: {product['productName']}")
if not matches:
print(f" ❌ 無匹配")
return keywords
def debug_intent_analysis():
"""調試意圖分析邏輯"""
def analyze_query_intent_debug(message: str):
"""調試版意圖分析"""
message_lower = message.lower()
# 商品查詢關鍵字(擴展版)
product_keywords = [
'推薦', '有沒有', '是否有', '請問有', '商品', '產品', '貨品',
'查詢', '搜尋', '找', '庫存', '存貨', '價格', '多少錢',
'貓砂', '狗糧', '寵物', '食品', '用品', '貓', '狗', '寵物用品',
'cat', 'dog', 'pet', 'litter', 'food', '還有嗎', '還有'
]
# 推薦查詢關鍵字
recommendation_keywords = ['推薦', '建議', '介紹', '有什麼', '哪些', '什麼好', '推薦一些']
# 庫存查詢關鍵字
inventory_keywords = ['庫存', '存貨', '剩餘', '還有', '現貨', '有多少', '剩多少', '還有嗎']
is_product_query = any(keyword in message_lower for keyword in product_keywords)
is_recommendation = any(keyword in message_lower for keyword in recommendation_keywords)
is_inventory_check = any(keyword in message_lower for keyword in inventory_keywords)
confidence = 0.5
if is_product_query:
confidence += 0.3
if is_recommendation:
confidence += 0.2
if is_inventory_check:
confidence += 0.2
return {
"is_product_query": is_product_query,
"is_recommendation": is_recommendation,
"is_inventory_check": is_inventory_check,
"confidence": min(confidence, 1.0),
"intent": "product_query" if is_product_query else "unknown",
"matched_keywords": [kw for kw in product_keywords if kw in message_lower]
}
print("\n🤖 調試意圖分析邏輯")
print("=" * 50)
test_query = "貓砂還有嗎?"
print(f"查詢: '{test_query}'")
analysis = analyze_query_intent_debug(test_query)
print(f"商品查詢: {analysis['is_product_query']}")
print(f"推薦查詢: {analysis['is_recommendation']}")
print(f"庫存查詢: {analysis['is_inventory_check']}")
print(f"信心度: {analysis['confidence']:.2f}")
print(f"匹配的關鍵字: {analysis['matched_keywords']}")
return analysis
def debug_search_logic():
"""調試搜尋邏輯"""
print("\n🔍 調試搜尋邏輯")
print("=" * 50)
# 模擬 search_products_advanced 邏輯
def simulate_search_products_advanced(query_text: str):
"""模擬進階商品搜尋"""
# 1. 提取關鍵字
def extract_keywords_with_expansion(query_text: str):
stop_words = ['推薦', '有沒有', '是否有', '請問', '想要', '需要', '找', '查詢', '搜尋', '還有嗎', '?', '?']
words = query_text.replace('?', '').replace('?', '').split()
keywords = [word for word in words if word not in stop_words and len(word) > 1]
expanded_keywords = []
for keyword in keywords:
expanded_keywords.append(keyword)
if '貓砂' in keyword or '貓' in keyword:
expanded_keywords.extend(['礦砂', '豆腐砂', '水晶砂', '木屑砂', 'litter'])
if '狗糧' in keyword or '狗' in keyword:
expanded_keywords.extend(['犬糧', '犬種', '狗食', 'dog'])
if '寵物' in keyword:
expanded_keywords.extend(['貓', '狗', '犬', 'pet', 'cat'])
return expanded_keywords if expanded_keywords else [query_text.strip()]
# 2. 商品資料
products = [
{
"id": 2,
"productCode": "SW-06-01",
"productName": "Shovel well豪好鏟 破碎型礦砂",
"stock": 50,
"is_deleted": False
},
{
"id": 3,
"productCode": "TL-03",
"productName": "美國極冠貓砂 薰衣草12kg",
"stock": 48,
"is_deleted": False
}
]
# 3. 搜尋邏輯
keywords = extract_keywords_with_expansion(query_text)
print(f"搜尋關鍵字: {keywords}")
matched_products = []
for product in products:
if product["is_deleted"]:
continue
# 檢查是否有任一關鍵字匹配
for keyword in keywords:
keyword_lower = keyword.lower()
product_name_lower = product["productName"].lower()
product_code_lower = product["productCode"].lower()
if (keyword_lower in product_name_lower or
keyword_lower in product_code_lower):
matched_products.append(product)
print(f" ✅ 匹配: {product['productName']} (關鍵字: {keyword})")
break # 找到匹配就跳出
return {
"success": True,
"data": matched_products,
"count": len(matched_products)
}
test_query = "貓砂還有嗎?"
result = simulate_search_products_advanced(test_query)
print(f"搜尋結果:")
print(f" 成功: {result['success']}")
print(f" 數量: {result['count']}")
if result['data']:
print(f" 找到的商品:")
for product in result['data']:
print(f" - {product['productName']} (庫存: {product['stock']})")
else:
print(f" ❌ 沒有找到商品")
def main():
"""主函數"""
print("🚨 緊急調試:貓砂查詢問題")
print("=" * 60)
# 1. 調試意圖分析
intent_analysis = debug_intent_analysis()
# 2. 調試關鍵字擴展和商品匹配
debug_product_matching()
# 3. 調試完整搜尋邏輯
debug_search_logic()
print("\n" + "=" * 60)
print("🔍 問題診斷結果:")
if intent_analysis["confidence"] >= 1.0:
print("✅ 意圖識別正常 (信心度 1.00)")
else:
print("❌ 意圖識別有問題")
print("\n💡 可能的問題:")
print("1. 關鍵字擴展邏輯是否正確執行?")
print("2. 資料庫查詢是否有錯誤?")
print("3. 商品資料是否正確載入?")
print("4. SQL 查詢條件是否正確?")
if __name__ == "__main__":
main()
|