|
|
|
|
|
DETAILED_DISCOVER_PROMPT = """ |
|
Analyze the provided input (either a news article screenshot or pasted text) for Google Discover optimization patterns. Your goal is to identify characteristics that influence visibility in Google Discover and provide actionable recommendations. |
|
|
|
Return your analysis as a single, valid JSON object adhering strictly to the following structure: |
|
|
|
{ |
|
"input_type": "[Image|Text]", // Specify if the analysis was based on an Image or Text |
|
"content_summary": { |
|
"headline": "string | null", // Extracted main headline. Null if not identifiable. |
|
"source": "string | null", // Publication name/domain. Null if not identifiable. |
|
"core_topic": "string | null", // Concise summary (1-2 sentences) of the main subject. Null if unclear. |
|
"publication_date": "string | null", // Visible date (YYYY-MM-DD, relative, etc.). Null if not found. |
|
"primary_image_description": "string | null", // Description of main visual (if image input). Null otherwise or if no distinct primary image. |
|
"originality_assessment": "string" // Assessment like "Likely original reporting", "Author name visible", "Appears aggregated", "Agency source credited", "Cannot determine". |
|
}, |
|
"topic_identification": { |
|
"primary_category": "string | null", // Broad category (e.g., Technology, World News, Health, Finance, Entertainment, Sports, Lifestyle). Null if ambiguous. |
|
"subtopics": ["string"], // List of specific subtopics mentioned (e.g., "AI ethics", "UK general election", "COVID-19 variants"). Empty list if none specific identified. |
|
"named_entities": { |
|
"people": ["string"], // List of recognized people's names. |
|
"places": ["string"], // List of recognized locations. |
|
"organizations": ["string"], // List of recognized organizations/companies. |
|
"products": ["string"], // List of recognized products/services. |
|
"concepts": ["string"] // List of key abstract concepts (e.g., "inflation", "climate change", "machine learning"). |
|
}, |
|
"timeliness": "string" // Assessment: "Breaking News", "Trending Topic", "Recent Update", "Evergreen Content", "Time-Sensitive Event". |
|
}, |
|
"content_structure_analysis": { |
|
"headline_characteristics": { |
|
"length_category": "string", // "Short" (<7 words), "Medium" (7-12 words), "Long" (>12 words). |
|
"style": "string", // "Statement", "Question", "List-based", "How-to", "Intrigue/Clickbait", "Command". |
|
"uses_numbers": "boolean", // True if headline contains digits. |
|
"emotional_sentiment": "string" // "Positive", "Negative", "Neutral", "Evocative/Emotional". Analyze the likely emotional impact. |
|
}, |
|
"content_format": "string | null", // Identified format: "News Report", "Listicle", "Opinion/Editorial", "In-depth Analysis", "Q&A/Interview", "Review", "Guide/How-to". Null if unclear. |
|
"visual_elements_usage": "string | null", // Describe image/video use (if image input): "Single prominent featured image", "Multiple inline images", "Image gallery", "Embedded video", "Infographics present", "Minimal visuals". Null if text input or no visuals. |
|
"estimated_content_depth": "string" // Assessment: "Surface-level summary", "Moderate detail", "Comprehensive analysis", "Highly specialized/Technical". Based on visible text/structure. |
|
}, |
|
"discover_visibility_patterns": { |
|
"e_e_a_t_signals": { // Assess based *only* on visible cues in the screenshot/text |
|
"experience": "string", // "Demonstrated" (e.g., first-person account, author credentials visible), "Implied", "Not evident". |
|
"expertise": "string", // "High" (e.g., specialized topic, named expert author/source), "Moderate", "General", "Not evident". |
|
"authoritativeness": "string", // "High" (e.g., well-known reputable source visible), "Moderate" (e.g., recognizable but less prominent source), "Low" (e.g., unknown source, blog), "Not evident". |
|
"trustworthiness": "string" // "High" (e.g., objective tone, cited sources visible), "Moderate", "Low" (e.g., sensationalized language, lack of evidence), "Not evident". |
|
}, |
|
"personalization_factors": { |
|
"potential_interest_categories": ["string"], // List of Google Discover-like interest categories this might fit (e.g., "Artificial Intelligence", "UK Politics", "Travel", "Personal Finance"). |
|
"location_relevance": "string", // "High" (mentions specific local places), "Moderate" (country-specific topic), "Low", "Global". |
|
"demographic_targeting_hints": "string" // Brief assessment like "Broad appeal", "Targets specific age group (e.g., Gen Z)", "Targets professionals in [field]", "Targets hobbyists (e.g., gaming)". |
|
}, |
|
"language_and_region": { |
|
"detected_language": "string", // ISO 639-1 code (e.g., "en", "tr", "de"). |
|
"primary_regional_target": "string" // Estimated primary target region/country based on context/source (e.g., "UK", "US", "Turkey", "Global", "EU"). |
|
}, |
|
"topic_popularity_indicators": "string", // "High-interest mainstream topic", "Niche but active community interest", "Tied to major current event", "Seasonal topic", "Generally low interest". |
|
"freshness_and_uniqueness_signals": "string" // "Unique perspective/analysis", "Standard reporting on event", "Appears recently published", "Update to ongoing story", "Timeless/evergreen information". |
|
}, |
|
"optimization_recommendations": [ // Provide 3-5 actionable recommendations |
|
{ |
|
"category": "string", // "Headline", "Content Structure", "Topic/Angle", "Visuals", "E-E-A-T", "Entities/Keywords" |
|
"recommendation": "string", // Specific advice, e.g., "Make the headline a question to increase intrigue." |
|
"implementation_difficulty": "string", // "Easy", "Medium", "Hard" |
|
"potential_impact": "string" // "Low", "Medium", "High", "Very High" |
|
} |
|
// ... more recommendations |
|
], |
|
"google_discover_score": { // Added scorecard section |
|
"score": "float", // Overall score from 0.00 to 1.00, representing estimated Discover potential based on analysis. |
|
"explanation": "string", // Brief (1-2 sentences) explanation justifying the score based on key factors identified above. |
|
"key_positive_factors": ["string"], // List 2-3 key strengths contributing positively to the score. |
|
"key_negative_factors": ["string"] // List 2-3 key weaknesses detracting from the score. |
|
} |
|
} |
|
|
|
IMPORTANT: Ensure the entire output is ONLY a single, valid JSON object. Do not include any text before or after the JSON structure. Double-check for correct syntax, especially commas and quotes. |
|
""" |