babel-router-api / chunking.py
mayacou's picture
Create chunking.py
36ed2b7 verified
import re
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
def get_max_word_length(target_languages: list[str]) -> int:
helsinki_word_limits = {
"el": 50,
"et": 50,
"fi": 50,
"fr": 40,
"sv": 140,
"hu": 50,
"lt": 50,
"sk": 140,
"bg": 50,
"cs": 140,
"da": 140,
"de": 150,
}
max_word_length = 700 # Default for non-Helsinki languages
for lang in target_languages:
if lang in helsinki_word_limits:
if helsinki_word_limits[lang] < max_word_length:
max_word_length = helsinki_word_limits[lang]
return max_word_length
def chunk_text(text: str, safe_word_limit: int) -> list[str]:
sentences = re.split(r'(?<=[.!?])\s+', text.strip())
chunks = []
current_chunk = []
current_word_count = 0
for sentence in sentences:
sentence = sentence.strip()
if not sentence:
continue
word_count = len(sentence.split())
# If sentence is longer than the safe word limit by itself, split it
if word_count > safe_word_limit:
if current_chunk:
chunks.append(' '.join(current_chunk))
current_chunk = []
current_word_count = 0
words = sentence.split()
for i in range(0, len(words), safe_word_limit):
chunks.append(' '.join(words[i:i+safe_word_limit]))
continue
# Otherwise, see if it fits in the current chunk
if current_word_count + word_count <= safe_word_limit:
current_chunk.append(sentence)
current_word_count += word_count
else:
# Start a new chunk
chunks.append(' '.join(current_chunk))
current_chunk = [sentence]
current_word_count = word_count
if current_chunk:
chunks.append(' '.join(current_chunk))
return chunks