docker_dash / app.py
mattritchey's picture
Create app.py
703e2f1 verified
import dash
from dash import dcc, html, Input, Output, State
import dash_bootstrap_components as dbc
from transformers import pipeline
import plotly.graph_objects as go
import os
# Initialize Hugging Face pipelines
try:
sentiment_pipeline = pipeline("sentiment-analysis", model="cardiffnlp/twitter-roberta-base-sentiment-latest")
text_generator = pipeline("text-generation", model="gpt2", max_length=100)
except Exception as e:
print(f"Error loading models: {e}")
sentiment_pipeline = None
text_generator = None
# Initialize Dash app
app = dash.Dash(__name__, external_stylesheets=[dbc.themes.BOOTSTRAP])
app.title = "Hugging Face Dash Demo"
# Define the layout
app.layout = dbc.Container([
dbc.Row([
dbc.Col([
html.H1("🤗 Hugging Face + Dash Demo", className="text-center mb-4"),
html.Hr(),
])
]),
dbc.Row([
dbc.Col([
dbc.Card([
dbc.CardBody([
html.H4("Sentiment Analysis", className="card-title"),
dcc.Textarea(
id='sentiment-input',
placeholder='Enter text to analyze sentiment...',
style={'width': '100%', 'height': 100},
className="mb-3"
),
dbc.Button("Analyze Sentiment", id="sentiment-btn", color="primary", className="mb-3"),
html.Div(id='sentiment-output')
])
])
], width=6),
dbc.Col([
dbc.Card([
dbc.CardBody([
html.H4("Text Generation", className="card-title"),
dcc.Textarea(
id='generation-input',
placeholder='Enter prompt for text generation...',
style={'width': '100%', 'height': 100},
className="mb-3"
),
dbc.Button("Generate Text", id="generation-btn", color="success", className="mb-3"),
html.Div(id='generation-output')
])
])
], width=6)
], className="mb-4"),
dbc.Row([
dbc.Col([
dbc.Card([
dbc.CardBody([
html.H4("Sentiment Score Visualization", className="card-title"),
dcc.Graph(id='sentiment-graph')
])
])
])
])
], fluid=True)
# Callback for sentiment analysis
@app.callback(
[Output('sentiment-output', 'children'),
Output('sentiment-graph', 'figure')],
[Input('sentiment-btn', 'n_clicks')],
[State('sentiment-input', 'value')]
)
def analyze_sentiment(n_clicks, text):
if not n_clicks or not text or not sentiment_pipeline:
return "Enter text and click 'Analyze Sentiment'", {}
try:
result = sentiment_pipeline(text)
label = result[0]['label']
score = result[0]['score']
# Create output
output = dbc.Alert([
html.H5(f"Sentiment: {label}"),
html.P(f"Confidence: {score:.2%}")
], color="info")
# Create visualization
colors = {'POSITIVE': 'green', 'NEGATIVE': 'red', 'NEUTRAL': 'orange'}
fig = go.Figure(data=[
go.Bar(x=[label], y=[score], marker_color=colors.get(label, 'blue'))
])
fig.update_layout(
title="Sentiment Analysis Result",
xaxis_title="Sentiment",
yaxis_title="Confidence Score",
yaxis=dict(range=[0, 1])
)
return output, fig
except Exception as e:
return dbc.Alert(f"Error: {str(e)}", color="danger"), {}
# Callback for text generation
@app.callback(
Output('generation-output', 'children'),
[Input('generation-btn', 'n_clicks')],
[State('generation-input', 'value')]
)
def generate_text(n_clicks, prompt):
if not n_clicks or not prompt or not text_generator:
return "Enter a prompt and click 'Generate Text'"
try:
result = text_generator(prompt, max_length=len(prompt.split()) + 50, num_return_sequences=1)
generated_text = result[0]['generated_text']
return dbc.Alert([
html.H5("Generated Text:"),
html.P(generated_text)
], color="success")
except Exception as e:
return dbc.Alert(f"Error: {str(e)}", color="danger")
# Run the app
if __name__ == '__main__':
# Hugging Face Spaces requires the app to run on port 7860
app.run_server(host='0.0.0.0', port=7860, debug=False)