from transformers import pipeline import gradio as gr model_path="matiss/Latvian-Twitter-Sentiment-Analysis" sentiment_task = pipeline("sentiment-analysis", model=model_path, tokenizer=model_path) def classify(text): output = sentiment_task(text) return output[0]['label'], output[0]['score'] #demo = gr.Interface(fn=classify, inputs="text", outputs="text") with gr.Blocks() as demo: with gr.Row(): with gr.Column(): textbox = gr.Textbox(label="Input text:", placeholder="Man garšo pankūkas ar kotletēm", lines=5) greet_btn = gr.Button("Classify") with gr.Column(): outbox = gr.Textbox(label="Prediction:", placeholder="positive") runbox = gr.Textbox(label="Score") greet_btn.click( fn=classify, inputs=textbox, outputs=[outbox, runbox] ) examples = gr.Examples( examples=[ ["Lietus šodien līst kā pa Jāņiem."], ["Es neciešu pirmdienas"], ["Pusdienās Tev jāēd brokolis, steiks, biezpiensieriņš un jāuzdzer Dlight."], ["Nesaprotu vairs kas te tagad notiek"], ["Man garšo pankūkas ar kotletēm"], ], inputs=[textbox], ) demo.launch()