Spaces:
mashroo
/
Running on Zero

File size: 10,286 Bytes
9d0b3b4
4932a8f
f4e8cf6
 
 
 
 
 
 
 
 
 
9d0b3b4
f4e8cf6
 
 
 
 
05a5508
 
f4e8cf6
 
 
05a5508
 
 
 
 
135bed3
f4e8cf6
 
bb9cdff
b6b723a
 
 
 
 
 
 
 
 
 
 
f4e8cf6
 
 
bb9cdff
05a5508
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f4e8cf6
 
 
 
05a5508
 
 
 
 
1756164
 
 
 
 
 
 
 
 
 
05a5508
f4e8cf6
 
bb9cdff
f4e8cf6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c69515e
 
 
 
 
 
867f45c
 
c69515e
 
 
867f45c
c69515e
 
 
 
05a5508
 
 
1452c34
c69515e
 
 
 
 
 
 
 
 
 
 
05a48c5
867f45c
 
 
 
 
 
 
 
1fa688f
867f45c
1fa688f
bb9cdff
 
 
5407b39
 
 
 
 
 
 
 
 
 
 
 
1fa688f
9d0b3b4
bb9cdff
 
 
 
 
9d0b3b4
 
bfac008
bb9cdff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9d0b3b4
bb9cdff
 
f4e8cf6
e3cc233
 
 
 
 
 
50e2279
1eb08e4
552ea8a
 
 
1eb08e4
 
 
50e2279
732c53f
8e3405b
1eb08e4
732c53f
1eb08e4
 
50e2279
732c53f
bb9cdff
 
 
 
 
 
 
1eb08e4
 
 
 
 
50e2279
1eb08e4
 
 
bb9cdff
 
 
50e2279
bb9cdff
 
 
 
 
1eb08e4
50e2279
bb9cdff
 
d72a5f9
 
 
 
1eb08e4
 
50e2279
 
 
 
 
 
 
 
bb9cdff
50e2279
bb9cdff
50e2279
 
bb9cdff
50e2279
 
bb9cdff
50e2279
 
 
 
 
552ea8a
38006c2
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
# Not ready to use yet
import spaces
import argparse
import numpy as np
import gradio as gr
from omegaconf import OmegaConf
import torch
from PIL import Image
import PIL
from pipelines import TwoStagePipeline
from huggingface_hub import hf_hub_download
import os
import rembg
from typing import Any
import json
import os
import json
import argparse
import requests
import tempfile

from model import CRM
from inference import generate3d
from dis_bg_remover import remove_background as dis_remove_background

DIS_ONNX_MODEL_PATH = os.environ.get("DIS_ONNX_MODEL_PATH", "isnet_dis.onnx")
DIS_ONNX_MODEL_URL = "https://huggingface.co/stoned0651/isnet_dis.onnx/resolve/main/isnet_dis.onnx"


pipeline = None


def expand_to_square(image, bg_color=(0, 0, 0, 0)):
    # expand image to 1:1
    width, height = image.size
    if width == height:
        return image
    new_size = (max(width, height), max(width, height))
    new_image = Image.new("RGBA", new_size, bg_color)
    paste_position = ((new_size[0] - width) // 2, (new_size[1] - height) // 2)
    new_image.paste(image, paste_position)
    return new_image

def check_input_image(input_image):
    if input_image is None:
        raise gr.Error("No image uploaded!")

def ensure_dis_onnx_model():
    if not os.path.exists(DIS_ONNX_MODEL_PATH):
        try:
            print(f"Model file not found at {DIS_ONNX_MODEL_PATH}. Downloading from {DIS_ONNX_MODEL_URL}...")
            response = requests.get(DIS_ONNX_MODEL_URL, stream=True)
            response.raise_for_status()
            with open(DIS_ONNX_MODEL_PATH, "wb") as f:
                for chunk in response.iter_content(chunk_size=8192):
                    if chunk:
                        f.write(chunk)
            print(f"Downloaded model to {DIS_ONNX_MODEL_PATH}")
        except Exception as e:
            raise gr.Error(
                f"Failed to download DIS background remover model file: {e}\n"
                f"Please manually download it from {DIS_ONNX_MODEL_URL} and place it in the project directory or set the DIS_ONNX_MODEL_PATH environment variable."
            )



def remove_background(
    image: PIL.Image.Image,
) -> PIL.Image.Image:
    ensure_dis_onnx_model()
    # Create a temporary file to save the image
    with tempfile.NamedTemporaryFile(suffix=".png", delete=True) as temp:
        # Save the PIL image to the temporary file
        image.save(temp.name)
        extracted_img, mask = dis_remove_background(DIS_ONNX_MODEL_PATH, temp.name)
    if isinstance(extracted_img, np.ndarray):
        if mask.dtype != np.uint8:
            mask = (np.clip(mask, 0, 1) * 255).astype(np.uint8)
        if mask.ndim == 3:
            mask = mask[..., 0]
        image = image.convert("RGBA")
        image_np = np.array(image)
        image_np[..., 3] = mask
        return Image.fromarray(image_np)
    return extracted_img

def do_resize_content(original_image: Image, scale_rate):
    # resize image content wile retain the original image size
    if scale_rate != 1:
        # Calculate the new size after rescaling
        new_size = tuple(int(dim * scale_rate) for dim in original_image.size)
        # Resize the image while maintaining the aspect ratio
        resized_image = original_image.resize(new_size)
        # Create a new image with the original size and black background
        padded_image = Image.new("RGBA", original_image.size, (0, 0, 0, 0))
        paste_position = ((original_image.width - resized_image.width) // 2, (original_image.height - resized_image.height) // 2)
        padded_image.paste(resized_image, paste_position)
        return padded_image
    else:
        return original_image

def add_background(image, bg_color=(255, 255, 255)):
    # given an RGBA image, alpha channel is used as mask to add background color
    background = Image.new("RGBA", image.size, bg_color)
    return Image.alpha_composite(background, image)


def hex_to_rgb(hex_color: str) -> tuple[int, int, int]:
    """Converts a hex color string to an RGB tuple."""
    hex_color = hex_color.lstrip('#')
    return tuple(int(hex_color[i:i+2], 16) for i in (0, 2, 4))


def preprocess_image(image, background_choice, foreground_ratio, backgroud_color):
    """
    Preprocesses the input image by optionally removing the background, resizing,
    and adding a new solid background.
    Returns an RGB PIL Image.
    """
    if image.mode != 'RGBA':
        image = image.convert('RGBA')

    if background_choice == "Auto Remove background":
        image = remove_background(image)
        if image is None:
            raise gr.Error("Background removal failed. Please check the input image and ensure the model file exists and is valid.")

    # Resize the content of the image
    image = do_resize_content(image, foreground_ratio)
    
    # Add a solid background color
    rgb_background = hex_to_rgb(backgroud_color)
    image_with_bg = add_background(image, rgb_background)
    
    # Convert to RGB and return
    return image_with_bg.convert("RGB")


@spaces.GPU
def gen_image(input_image, seed, scale, step):
    global pipeline, model, args
    pipeline.set_seed(seed)
    rt_dict = pipeline(input_image, scale=scale, step=step)
    stage1_images = rt_dict["stage1_images"]
    stage2_images = rt_dict["stage2_images"]
    np_imgs = np.concatenate(stage1_images, 1)
    np_xyzs = np.concatenate(stage2_images, 1)

    glb_path = generate3d(model, np_imgs, np_xyzs, args.device)
    return Image.fromarray(np_imgs), Image.fromarray(np_xyzs), glb_path#, obj_path


parser = argparse.ArgumentParser()
parser.add_argument(
    "--stage1_config",
    type=str,
    default="configs/nf7_v3_SNR_rd_size_stroke.yaml",
    help="config for stage1",
)
parser.add_argument(
    "--stage2_config",
    type=str,
    default="configs/stage2-v2-snr.yaml",
    help="config for stage2",
)

parser.add_argument("--device", type=str, default="cuda")
args = parser.parse_args()

crm_path = hf_hub_download(repo_id="Zhengyi/CRM", filename="CRM.pth")
specs = json.load(open("configs/specs_objaverse_total.json"))
model = CRM(specs)
model.load_state_dict(torch.load(crm_path, map_location="cpu"), strict=False)
model = model.to(args.device)

stage1_config = OmegaConf.load(args.stage1_config).config
stage2_config = OmegaConf.load(args.stage2_config).config
stage2_sampler_config = stage2_config.sampler
stage1_sampler_config = stage1_config.sampler

stage1_model_config = stage1_config.models
stage2_model_config = stage2_config.models

xyz_path = hf_hub_download(repo_id="Zhengyi/CRM", filename="ccm-diffusion.pth")
pixel_path = hf_hub_download(repo_id="Zhengyi/CRM", filename="pixel-diffusion.pth")
stage1_model_config.resume = pixel_path
stage2_model_config.resume = xyz_path

pipeline = TwoStagePipeline(
    stage1_model_config,
    stage2_model_config,
    stage1_sampler_config,
    stage2_sampler_config,
    device=args.device,
    dtype=torch.float32
)

_DESCRIPTION = '''
* Our [official implementation](https://github.com/thu-ml/CRM) uses UV texture instead of vertex color. It has better texture than this online demo.
* Project page of CRM: https://ml.cs.tsinghua.edu.cn/~zhengyi/CRM/
* If you find the output unsatisfying, try using different seeds:)
'''

with gr.Blocks() as demo:
    gr.Markdown("# CRM: Single Image to 3D Textured Mesh with Convolutional Reconstruction Model")
    gr.Markdown(_DESCRIPTION)
    with gr.Row():
        with gr.Column():
            with gr.Row():
                image_input = gr.Image(
                    label="Image input",
                    image_mode="RGBA",
                    sources="upload",
                    type="pil",
                )
                processed_image = gr.Image(label="Processed Image", interactive=False, type="pil", image_mode="RGB")
            with gr.Row():
                with gr.Column():
                    with gr.Row():
                        background_choice = gr.Radio([
                                "Alpha as mask",
                                "Auto Remove background"
                            ], value="Auto Remove background",
                            label="backgroud choice")
                        # do_remove_background = gr.Checkbox(label=, value=True)
                        # force_remove = gr.Checkbox(label=, value=False)
                    back_groud_color = gr.ColorPicker(label="Background Color", value="#7F7F7F", interactive=False)
                    foreground_ratio = gr.Slider(
                        label="Foreground Ratio",
                        minimum=0.5,
                        maximum=1.0,
                        value=1.0,
                        step=0.05,
                    )

                with gr.Column():
                    seed = gr.Number(value=1234, label="seed", precision=0)
                    guidance_scale = gr.Number(value=5.5, minimum=3, maximum=10, label="guidance_scale")
                    step = gr.Number(value=30, minimum=30, maximum=100, label="sample steps", precision=0)
            text_button = gr.Button("Generate 3D shape")
            gr.Examples(
                examples=[os.path.join("examples", i) for i in os.listdir("examples")],
                inputs=[image_input],
                examples_per_page = 20,
            )
        with gr.Column():
            image_output = gr.Image(interactive=False, label="Output RGB image")
            xyz_ouput = gr.Image(interactive=False, label="Output CCM image")

            output_model = gr.Model3D(
                label="Output OBJ",
                interactive=False,
            )
            gr.Markdown("Note: Ensure that the input image is correctly pre-processed into a grey background, otherwise the results will be unpredictable.")

    inputs = [
        processed_image,
        seed,
        guidance_scale,
        step,
    ]
    outputs = [
        image_output,
        xyz_ouput,
        output_model,
        # output_obj,
    ]


    text_button.click(fn=check_input_image, inputs=[image_input]).success(
        fn=preprocess_image,
        inputs=[image_input, background_choice, foreground_ratio, back_groud_color],
        outputs=[processed_image],
    ).success(
        fn=gen_image,
        inputs=inputs,
        outputs=outputs,
    )
    demo.queue().launch()