from transformers import CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, UNet2DConditionModel from diffusers import LMSDiscreteScheduler import torch from tqdm.auto import tqdm from PIL import Image import gradio as gr tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-large-patch14") text_encoder = CLIPTextModel.from_pretrained("openai/clip-vit-large-patch14") vae = AutoencoderKL.from_pretrained("stabilityai/sd-vae-ft-ema") unet = UNet2DConditionModel.from_pretrained("CompVis/stable-diffusion-v1-4", subfolder="unet") beta_start, beta_end = 0.00085, 0.012 height = 512 width = 512 num_inference_steps = 70 guidance_scale = 7.5 batch_size = 1 scheduler = LMSDiscreteScheduler(beta_start=beta_start, beta_end=beta_end, beta_schedule="scaled_linear", num_train_timesteps=1000) def text_enc(prompts, maxlen=None): if maxlen is None: maxlen = tokenizer.model_max_length inp = tokenizer(prompts, padding="max_length", max_length=maxlen, truncation=True, return_tensors="pt") input_ids = inp.input_ids input_ids = input_ids.to(torch.int) return text_encoder(input_ids)[0] def do_both(prompts): def mk_img(t): image = (t/2+0.5).clamp(0,1).detach().cpu().permute(1, 2, 0).numpy() return Image.fromarray((image*255).round().astype("uint8")) def mk_samples(prompts, g=7.5, seed=100, steps=70): bs = len(prompts) text = text_enc(prompts) uncond = text_enc([""] * bs, text.shape[1]) emb = torch.cat([uncond, text]) if seed: torch.manual_seed(seed) latents = torch.randn((bs, unet.config.in_channels, height//8, width//8)) scheduler.set_timesteps(steps) latents = latents.float() * scheduler.init_noise_sigma for i,ts in enumerate(tqdm(scheduler.timesteps)): inp = scheduler.scale_model_input(torch.cat([latents] * 2), ts) with torch.no_grad(): u,t = unet(inp, ts, encoder_hidden_states=emb).sample.chunk(2) pred = u + g*(t-u) latents = scheduler.step(pred, ts, latents).prev_sample with torch.no_grad(): return vae.decode(1 / 0.18215 * latents).sample images = mk_samples([prompts]) for img in images: return(mk_img(img)) gr.Interface(do_both, gr.Text(), gr.Image(), title='Stable Diffusion model from scratch').launch(share=True, debug=True)