Commit
·
ffd1a8e
1
Parent(s):
b32485e
Add application file
Browse files- app.py +62 -0
- requirements.txt +3 -0
app.py
ADDED
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import CLIPTextModel, CLIPTokenizer
|
2 |
+
from diffusers import AutoencoderKL, UNet2DConditionModel
|
3 |
+
from diffusers import LMSDiscreteScheduler
|
4 |
+
import torch
|
5 |
+
from tqdm.auto import tqdm
|
6 |
+
from PIL import Image
|
7 |
+
import gradio as gr
|
8 |
+
from IPython.display import display
|
9 |
+
|
10 |
+
tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-large-patch14", torch_dtype=torch.float16)
|
11 |
+
text_encoder = CLIPTextModel.from_pretrained("openai/clip-vit-large-patch14", torch_dtype=torch.float16).to("cuda")
|
12 |
+
|
13 |
+
# Here we use a different VAE to the original release, which has been fine-tuned for more steps
|
14 |
+
vae = AutoencoderKL.from_pretrained("stabilityai/sd-vae-ft-ema", torch_dtype=torch.float16).to("cuda")
|
15 |
+
unet = UNet2DConditionModel.from_pretrained("CompVis/stable-diffusion-v1-4", subfolder="unet", torch_dtype=torch.float16).to("cuda")
|
16 |
+
|
17 |
+
beta_start,beta_end = 0.00085,0.012
|
18 |
+
height = 512
|
19 |
+
width = 512
|
20 |
+
num_inference_steps = 70
|
21 |
+
guidance_scale = 7.5
|
22 |
+
batch_size = 1
|
23 |
+
scheduler = LMSDiscreteScheduler(beta_start=beta_start, beta_end=beta_end, beta_schedule="scaled_linear", num_train_timesteps=1000)
|
24 |
+
|
25 |
+
#prompt = ["a photograph of an astronaut riding a horse"]
|
26 |
+
|
27 |
+
def text_enc(prompts, maxlen=None):
|
28 |
+
if maxlen is None: maxlen = tokenizer.model_max_length
|
29 |
+
inp = tokenizer(prompts, padding="max_length", max_length=maxlen, truncation=True, return_tensors="pt")
|
30 |
+
return text_encoder(inp.input_ids.to("cuda"))[0].half()
|
31 |
+
|
32 |
+
def do_both(prompts):
|
33 |
+
def mk_img(t):
|
34 |
+
image = (t/2+0.5).clamp(0,1).detach().cpu().permute(1, 2, 0).numpy()
|
35 |
+
return Image.fromarray((image*255).round().astype("uint8"))
|
36 |
+
|
37 |
+
def mk_samples(prompts, g=7.5, seed=100, steps=70):
|
38 |
+
bs = len(prompts)
|
39 |
+
text = text_enc(prompts)
|
40 |
+
uncond = text_enc([""] * bs, text.shape[1])
|
41 |
+
emb = torch.cat([uncond, text])
|
42 |
+
if seed: torch.manual_seed(seed)
|
43 |
+
|
44 |
+
latents = torch.randn((bs, unet.config.in_channels, height//8, width//8))
|
45 |
+
scheduler.set_timesteps(steps)
|
46 |
+
latents = latents.to("cuda").half() * scheduler.init_noise_sigma
|
47 |
+
|
48 |
+
for i,ts in enumerate(tqdm(scheduler.timesteps)):
|
49 |
+
inp = scheduler.scale_model_input(torch.cat([latents] * 2), ts)
|
50 |
+
with torch.no_grad(): u,t = unet(inp, ts, encoder_hidden_states=emb).sample.chunk(2)
|
51 |
+
pred = u + g*(t-u)
|
52 |
+
latents = scheduler.step(pred, ts, latents).prev_sample
|
53 |
+
|
54 |
+
with torch.no_grad(): return vae.decode(1 / 0.18215 * latents).sample
|
55 |
+
images = mk_samples([prompts])
|
56 |
+
for img in images: return(mk_img(img))
|
57 |
+
|
58 |
+
# do_both(prompt)
|
59 |
+
# images = mk_samples(prompt)
|
60 |
+
#iface = gr.Interface(fn=do_both, inputs=gr.inputs.Textbox(lines=2, label="Enter text prompt"), outputs=gr.outputs.Image(type="numpy", label="Generated Image")).launch()
|
61 |
+
gr.Interface(do_both, gr.Text(), gr.Image(), title = 'Stable Diffusion model from scratch').launch(share = True, debug = True)
|
62 |
+
# for img in images: display(mk_img(img))
|
requirements.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
diffusers
|
2 |
+
transformers
|
3 |
+
torch
|