Spaces:
Runtime error
Runtime error
malvin noel
commited on
Commit
·
b73d328
1
Parent(s):
d5d7c32
space.gpu corrected
Browse files- scripts/generate_scripts.py +6 -10
- scripts/generate_subtitles.py +1 -1
scripts/generate_scripts.py
CHANGED
|
@@ -6,10 +6,6 @@ from transformers import AutoModelForCausalLM, AutoTokenizer
|
|
| 6 |
import gradio as gr
|
| 7 |
from dotenv import load_dotenv
|
| 8 |
import spaces
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
# Chargement du modèle et du tokenizer
|
| 12 |
-
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 13 |
import torch
|
| 14 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 15 |
|
|
@@ -18,8 +14,10 @@ model_id = "Qwen/Qwen2.5-0.5B"
|
|
| 18 |
tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True)
|
| 19 |
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.float32, trust_remote_code=True).to(device)
|
| 20 |
|
|
|
|
|
|
|
| 21 |
def generate_local(prompt: str, max_new_tokens: int = 350, temperature: float = 0.7) -> str:
|
| 22 |
-
device =
|
| 23 |
inputs = tokenizer(prompt, return_tensors="pt").to(device)
|
| 24 |
|
| 25 |
output_ids = model.generate(
|
|
@@ -32,7 +30,7 @@ def generate_local(prompt: str, max_new_tokens: int = 350, temperature: float =
|
|
| 32 |
return tokenizer.decode(output_ids[0], skip_special_tokens=True)
|
| 33 |
|
| 34 |
|
| 35 |
-
|
| 36 |
def generate_script(prompt: str, word_count: int = 60) -> str:
|
| 37 |
system_prompt = (
|
| 38 |
"You are a professional video scriptwriter. "
|
|
@@ -41,7 +39,7 @@ def generate_script(prompt: str, word_count: int = 60) -> str:
|
|
| 41 |
)
|
| 42 |
return generate_local(system_prompt)
|
| 43 |
|
| 44 |
-
|
| 45 |
def one_word(query: str) -> str:
|
| 46 |
prompt_final = (
|
| 47 |
"Extract only the unique central theme of the following text in English in JSON format like this: "
|
|
@@ -56,7 +54,7 @@ def one_word(query: str) -> str:
|
|
| 56 |
keyword = matches[0] if matches else ""
|
| 57 |
return keyword.lower()
|
| 58 |
|
| 59 |
-
|
| 60 |
def generate_title(text: str) -> str:
|
| 61 |
prompt_final = (
|
| 62 |
"Generate a unique title for a YouTube Short video that is engaging and informative, "
|
|
@@ -64,7 +62,6 @@ def generate_title(text: str) -> str:
|
|
| 64 |
)
|
| 65 |
return generate_local(prompt_final, max_new_tokens=50, temperature=0.9).strip()
|
| 66 |
|
| 67 |
-
@spaces.GPU()
|
| 68 |
def generate_description(text: str) -> str:
|
| 69 |
prompt_final = (
|
| 70 |
"Write only the YouTube video description in English:\n"
|
|
@@ -75,7 +72,6 @@ def generate_description(text: str) -> str:
|
|
| 75 |
)
|
| 76 |
return generate_local(prompt_final, max_new_tokens=300, temperature=0.7).strip()
|
| 77 |
|
| 78 |
-
@spaces.GPU()
|
| 79 |
def generate_tags(text: str) -> list:
|
| 80 |
prompt_final = (
|
| 81 |
"List only the important keywords for this YouTube video, separated by commas, "
|
|
|
|
| 6 |
import gradio as gr
|
| 7 |
from dotenv import load_dotenv
|
| 8 |
import spaces
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
import torch
|
| 10 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 11 |
|
|
|
|
| 14 |
tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True)
|
| 15 |
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.float32, trust_remote_code=True).to(device)
|
| 16 |
|
| 17 |
+
|
| 18 |
+
@spaces.GPU()
|
| 19 |
def generate_local(prompt: str, max_new_tokens: int = 350, temperature: float = 0.7) -> str:
|
| 20 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # get the device the model is on
|
| 21 |
inputs = tokenizer(prompt, return_tensors="pt").to(device)
|
| 22 |
|
| 23 |
output_ids = model.generate(
|
|
|
|
| 30 |
return tokenizer.decode(output_ids[0], skip_special_tokens=True)
|
| 31 |
|
| 32 |
|
| 33 |
+
|
| 34 |
def generate_script(prompt: str, word_count: int = 60) -> str:
|
| 35 |
system_prompt = (
|
| 36 |
"You are a professional video scriptwriter. "
|
|
|
|
| 39 |
)
|
| 40 |
return generate_local(system_prompt)
|
| 41 |
|
| 42 |
+
|
| 43 |
def one_word(query: str) -> str:
|
| 44 |
prompt_final = (
|
| 45 |
"Extract only the unique central theme of the following text in English in JSON format like this: "
|
|
|
|
| 54 |
keyword = matches[0] if matches else ""
|
| 55 |
return keyword.lower()
|
| 56 |
|
| 57 |
+
|
| 58 |
def generate_title(text: str) -> str:
|
| 59 |
prompt_final = (
|
| 60 |
"Generate a unique title for a YouTube Short video that is engaging and informative, "
|
|
|
|
| 62 |
)
|
| 63 |
return generate_local(prompt_final, max_new_tokens=50, temperature=0.9).strip()
|
| 64 |
|
|
|
|
| 65 |
def generate_description(text: str) -> str:
|
| 66 |
prompt_final = (
|
| 67 |
"Write only the YouTube video description in English:\n"
|
|
|
|
| 72 |
)
|
| 73 |
return generate_local(prompt_final, max_new_tokens=300, temperature=0.7).strip()
|
| 74 |
|
|
|
|
| 75 |
def generate_tags(text: str) -> list:
|
| 76 |
prompt_final = (
|
| 77 |
"List only the important keywords for this YouTube video, separated by commas, "
|
scripts/generate_subtitles.py
CHANGED
|
@@ -90,7 +90,7 @@ def transcribe_audio_to_subs(audio_path):
|
|
| 90 |
des segments start/end/text, et sauvegarde en .srt.
|
| 91 |
"""
|
| 92 |
print("🎙️ Transcription avec Whisper...")
|
| 93 |
-
model = whisper.load_model("medium"
|
| 94 |
result = model.transcribe(audio_path)
|
| 95 |
|
| 96 |
subtitles = [{
|
|
|
|
| 90 |
des segments start/end/text, et sauvegarde en .srt.
|
| 91 |
"""
|
| 92 |
print("🎙️ Transcription avec Whisper...")
|
| 93 |
+
model = whisper.load_model("medium")
|
| 94 |
result = model.transcribe(audio_path)
|
| 95 |
|
| 96 |
subtitles = [{
|