File size: 7,635 Bytes
354c6a0
123e49c
354c6a0
 
 
 
123e49c
 
29dedef
 
 
5fc9256
 
29dedef
354c6a0
 
 
29dedef
354c6a0
 
 
29dedef
354c6a0
 
 
 
29dedef
354c6a0
29dedef
 
354c6a0
 
 
29dedef
 
 
 
 
354c6a0
 
 
29dedef
354c6a0
 
29dedef
 
 
 
 
 
354c6a0
 
 
 
 
29dedef
354c6a0
 
 
 
29dedef
 
 
354c6a0
 
 
 
 
 
 
29dedef
354c6a0
 
 
 
 
 
 
 
 
 
29dedef
 
 
 
 
354c6a0
29dedef
354c6a0
 
 
29dedef
354c6a0
 
 
 
29dedef
354c6a0
29dedef
 
354c6a0
 
 
 
 
 
 
29dedef
 
354c6a0
 
29dedef
354c6a0
 
29dedef
 
 
 
 
 
354c6a0
29dedef
 
 
 
 
 
354c6a0
29dedef
354c6a0
 
 
 
29dedef
354c6a0
29dedef
354c6a0
 
29dedef
354c6a0
 
 
 
 
 
 
29dedef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
354c6a0
29dedef
 
354c6a0
29dedef
354c6a0
 
29dedef
354c6a0
 
 
 
 
29dedef
354c6a0
29dedef
 
 
354c6a0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
import numpy as np
import joblib
from typing import List, Dict, Any
from preprocessor import preprocess_for_classification


class TraditionalClassifier:
    """Traditional text classifier with probability distributions and metadata."""

    def __init__(
        self,
        classifier_path: str = "models/traditional_svm_classifier.joblib",
        vectorizer_path: str = "models/traditional_tfidf_vectorizer_classifier.joblib",
    ):
        self.model = joblib.load(classifier_path)
        self.vectorizer = joblib.load(vectorizer_path)
        self.model_name = classifier_path.split("/")[-1].replace(".joblib", "")

    def predict(self, text: str) -> Dict[str, Any]:
        """Predict class with full probability distribution and metadata."""
        cleaned_text = preprocess_for_classification(text)

        if self.vectorizer:
            text_vector = self.vectorizer.transform([cleaned_text])
        else:
            text_vector = [cleaned_text]

        prediction = self.model.predict(text_vector)[0]

        classes = getattr(self.model, "classes_", None)
        if classes is not None:
            prediction_index = int(np.where(classes == prediction)[0][0])
        else:
            prediction_index = (
                int(prediction) if isinstance(prediction, (int, np.integer)) else 0
            )

        if hasattr(self.model, "predict_proba"):
            probabilities = self.model.predict_proba(text_vector)[0]
            confidence = float(probabilities[prediction_index])
        else:
            if hasattr(self.model, "decision_function"):
                decision_scores = self.model.decision_function(text_vector)[0]
                if len(decision_scores.shape) == 0:
                    probabilities = np.array(
                        [
                            1 / (1 + np.exp(decision_scores)),
                            1 / (1 + np.exp(-decision_scores)),
                        ]
                    )
                else:
                    exp_scores = np.exp(decision_scores - np.max(decision_scores))
                    probabilities = exp_scores / np.sum(exp_scores)
                confidence = float(probabilities[prediction_index])
            else:
                classes = getattr(self.model, "classes_", None)
                num_classes = len(classes) if classes is not None else 2
                probabilities = np.zeros(num_classes)
                probabilities[prediction_index] = 1.0
                confidence = 1.0

        classes = getattr(self.model, "classes_", None)

        prob_distribution = {}
        if classes is not None:
            for i, class_label in enumerate(classes):
                prob_distribution[str(class_label)] = float(probabilities[i])
        else:
            for i, prob in enumerate(probabilities):
                prob_distribution[f"class_{i}"] = float(prob)

        return {
            "prediction": str(prediction),
            "prediction_index": int(prediction_index),
            "confidence": confidence,
            "probability_distribution": prob_distribution,
            "cleaned_text": cleaned_text,
            "model_used": self.model_name,
            "prediction_metadata": {
                "max_probability": float(np.max(probabilities)),
                "min_probability": float(np.min(probabilities)),
                "entropy": float(
                    -np.sum(probabilities * np.log(probabilities + 1e-10))
                ),
                "num_classes": len(probabilities),
            },
        }

    def predict_batch(self, texts: List[str]) -> List[Dict[str, Any]]:
        """Predict classes for multiple texts."""
        cleaned_texts = [preprocess_for_classification(text) for text in texts]

        if self.vectorizer:
            text_vectors = self.vectorizer.transform(cleaned_texts)
        else:
            text_vectors = cleaned_texts

        predictions = self.model.predict(text_vectors)
        classes = getattr(self.model, "classes_", None)

        prediction_indices = []
        for pred in predictions:
            if classes is not None:
                pred_index = int(np.where(classes == pred)[0][0])
            else:
                pred_index = int(pred) if isinstance(pred, (int, np.integer)) else 0
            prediction_indices.append(pred_index)

        if hasattr(self.model, "predict_proba"):
            probabilities = self.model.predict_proba(text_vectors)
        else:
            if hasattr(self.model, "decision_function"):
                decision_scores = self.model.decision_function(text_vectors)
                if len(decision_scores.shape) == 1:
                    probabilities = np.column_stack(
                        [
                            1 / (1 + np.exp(decision_scores)),
                            1 / (1 + np.exp(-decision_scores)),
                        ]
                    )
                else:
                    exp_scores = np.exp(
                        decision_scores - np.max(decision_scores, axis=1, keepdims=True)
                    )
                    probabilities = exp_scores / np.sum(
                        exp_scores, axis=1, keepdims=True
                    )
            else:
                classes = getattr(self.model, "classes_", None)
                num_classes = len(classes) if classes is not None else 2
                probabilities = np.zeros((len(predictions), num_classes))
                for i, pred_idx in enumerate(prediction_indices):
                    probabilities[i, pred_idx] = 1.0

        results = []

        for i, (pred, pred_idx) in enumerate(zip(predictions, prediction_indices)):
            confidence = float(probabilities[i][pred_idx])

            prob_distribution = {}
            if classes is not None:
                for j, class_label in enumerate(classes):
                    prob_distribution[str(class_label)] = float(probabilities[i][j])
            else:
                for j, prob in enumerate(probabilities[i]):
                    prob_distribution[f"class_{j}"] = float(prob)

            results.append(
                {
                    "prediction": str(pred),
                    "prediction_index": int(pred_idx),
                    "confidence": confidence,
                    "probability_distribution": prob_distribution,
                    "cleaned_text": cleaned_texts[i],
                    "model_used": self.model_name,
                    "prediction_metadata": {
                        "max_probability": float(np.max(probabilities[i])),
                        "min_probability": float(np.min(probabilities[i])),
                        "entropy": float(
                            -np.sum(probabilities[i] * np.log(probabilities[i] + 1e-10))
                        ),
                        "num_classes": len(probabilities[i]),
                    },
                }
            )

        return results

    def get_model_info(self) -> Dict[str, Any]:
        """Get model information and capabilities."""
        classes = getattr(self.model, "classes_", None)
        return {
            "model_name": self.model_name,
            "model_type": type(self.model).__name__,
            "num_classes": len(classes) if classes is not None else "unknown",
            "classes": classes.tolist() if classes is not None else None,
            "has_predict_proba": hasattr(self.model, "predict_proba"),
            "has_vectorizer": self.vectorizer is not None,
            "vectorizer_type": type(self.vectorizer).__name__
            if self.vectorizer
            else None,
        }