File size: 7,635 Bytes
354c6a0 123e49c 354c6a0 123e49c 29dedef 5fc9256 29dedef 354c6a0 29dedef 354c6a0 29dedef 354c6a0 29dedef 354c6a0 29dedef 354c6a0 29dedef 354c6a0 29dedef 354c6a0 29dedef 354c6a0 29dedef 354c6a0 29dedef 354c6a0 29dedef 354c6a0 29dedef 354c6a0 29dedef 354c6a0 29dedef 354c6a0 29dedef 354c6a0 29dedef 354c6a0 29dedef 354c6a0 29dedef 354c6a0 29dedef 354c6a0 29dedef 354c6a0 29dedef 354c6a0 29dedef 354c6a0 29dedef 354c6a0 29dedef 354c6a0 29dedef 354c6a0 29dedef 354c6a0 29dedef 354c6a0 29dedef 354c6a0 29dedef 354c6a0 29dedef 354c6a0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 |
import numpy as np
import joblib
from typing import List, Dict, Any
from preprocessor import preprocess_for_classification
class TraditionalClassifier:
"""Traditional text classifier with probability distributions and metadata."""
def __init__(
self,
classifier_path: str = "models/traditional_svm_classifier.joblib",
vectorizer_path: str = "models/traditional_tfidf_vectorizer_classifier.joblib",
):
self.model = joblib.load(classifier_path)
self.vectorizer = joblib.load(vectorizer_path)
self.model_name = classifier_path.split("/")[-1].replace(".joblib", "")
def predict(self, text: str) -> Dict[str, Any]:
"""Predict class with full probability distribution and metadata."""
cleaned_text = preprocess_for_classification(text)
if self.vectorizer:
text_vector = self.vectorizer.transform([cleaned_text])
else:
text_vector = [cleaned_text]
prediction = self.model.predict(text_vector)[0]
classes = getattr(self.model, "classes_", None)
if classes is not None:
prediction_index = int(np.where(classes == prediction)[0][0])
else:
prediction_index = (
int(prediction) if isinstance(prediction, (int, np.integer)) else 0
)
if hasattr(self.model, "predict_proba"):
probabilities = self.model.predict_proba(text_vector)[0]
confidence = float(probabilities[prediction_index])
else:
if hasattr(self.model, "decision_function"):
decision_scores = self.model.decision_function(text_vector)[0]
if len(decision_scores.shape) == 0:
probabilities = np.array(
[
1 / (1 + np.exp(decision_scores)),
1 / (1 + np.exp(-decision_scores)),
]
)
else:
exp_scores = np.exp(decision_scores - np.max(decision_scores))
probabilities = exp_scores / np.sum(exp_scores)
confidence = float(probabilities[prediction_index])
else:
classes = getattr(self.model, "classes_", None)
num_classes = len(classes) if classes is not None else 2
probabilities = np.zeros(num_classes)
probabilities[prediction_index] = 1.0
confidence = 1.0
classes = getattr(self.model, "classes_", None)
prob_distribution = {}
if classes is not None:
for i, class_label in enumerate(classes):
prob_distribution[str(class_label)] = float(probabilities[i])
else:
for i, prob in enumerate(probabilities):
prob_distribution[f"class_{i}"] = float(prob)
return {
"prediction": str(prediction),
"prediction_index": int(prediction_index),
"confidence": confidence,
"probability_distribution": prob_distribution,
"cleaned_text": cleaned_text,
"model_used": self.model_name,
"prediction_metadata": {
"max_probability": float(np.max(probabilities)),
"min_probability": float(np.min(probabilities)),
"entropy": float(
-np.sum(probabilities * np.log(probabilities + 1e-10))
),
"num_classes": len(probabilities),
},
}
def predict_batch(self, texts: List[str]) -> List[Dict[str, Any]]:
"""Predict classes for multiple texts."""
cleaned_texts = [preprocess_for_classification(text) for text in texts]
if self.vectorizer:
text_vectors = self.vectorizer.transform(cleaned_texts)
else:
text_vectors = cleaned_texts
predictions = self.model.predict(text_vectors)
classes = getattr(self.model, "classes_", None)
prediction_indices = []
for pred in predictions:
if classes is not None:
pred_index = int(np.where(classes == pred)[0][0])
else:
pred_index = int(pred) if isinstance(pred, (int, np.integer)) else 0
prediction_indices.append(pred_index)
if hasattr(self.model, "predict_proba"):
probabilities = self.model.predict_proba(text_vectors)
else:
if hasattr(self.model, "decision_function"):
decision_scores = self.model.decision_function(text_vectors)
if len(decision_scores.shape) == 1:
probabilities = np.column_stack(
[
1 / (1 + np.exp(decision_scores)),
1 / (1 + np.exp(-decision_scores)),
]
)
else:
exp_scores = np.exp(
decision_scores - np.max(decision_scores, axis=1, keepdims=True)
)
probabilities = exp_scores / np.sum(
exp_scores, axis=1, keepdims=True
)
else:
classes = getattr(self.model, "classes_", None)
num_classes = len(classes) if classes is not None else 2
probabilities = np.zeros((len(predictions), num_classes))
for i, pred_idx in enumerate(prediction_indices):
probabilities[i, pred_idx] = 1.0
results = []
for i, (pred, pred_idx) in enumerate(zip(predictions, prediction_indices)):
confidence = float(probabilities[i][pred_idx])
prob_distribution = {}
if classes is not None:
for j, class_label in enumerate(classes):
prob_distribution[str(class_label)] = float(probabilities[i][j])
else:
for j, prob in enumerate(probabilities[i]):
prob_distribution[f"class_{j}"] = float(prob)
results.append(
{
"prediction": str(pred),
"prediction_index": int(pred_idx),
"confidence": confidence,
"probability_distribution": prob_distribution,
"cleaned_text": cleaned_texts[i],
"model_used": self.model_name,
"prediction_metadata": {
"max_probability": float(np.max(probabilities[i])),
"min_probability": float(np.min(probabilities[i])),
"entropy": float(
-np.sum(probabilities[i] * np.log(probabilities[i] + 1e-10))
),
"num_classes": len(probabilities[i]),
},
}
)
return results
def get_model_info(self) -> Dict[str, Any]:
"""Get model information and capabilities."""
classes = getattr(self.model, "classes_", None)
return {
"model_name": self.model_name,
"model_type": type(self.model).__name__,
"num_classes": len(classes) if classes is not None else "unknown",
"classes": classes.tolist() if classes is not None else None,
"has_predict_proba": hasattr(self.model, "predict_proba"),
"has_vectorizer": self.vectorizer is not None,
"vectorizer_type": type(self.vectorizer).__name__
if self.vectorizer
else None,
}
|