Spaces:
Running
Running
Merged
Browse files- .gitignore +1 -1
- app.py +374 -125
- app_original.py +1069 -0
- src/about.py +71 -0
- src/display/utils.py +56 -3
- src/leaderboard/instr.txt +16 -0
- src/leaderboard/read_evals.py +156 -2
- src/populate.py +6 -3
- src/submission/check_validity.py +2 -2
.gitignore
CHANGED
@@ -15,4 +15,4 @@ eval-results-local/
|
|
15 |
medic-harness-requests/
|
16 |
medic-harness-results/
|
17 |
logs/
|
18 |
-
newharness/results/
|
|
|
15 |
medic-harness-requests/
|
16 |
medic-harness-results/
|
17 |
logs/
|
18 |
+
newharness/results/
|
app.py
CHANGED
@@ -53,8 +53,23 @@ from src.display.utils import (
|
|
53 |
Precision,
|
54 |
WeightType,
|
55 |
fields,
|
56 |
-
render_generation_templates
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
)
|
|
|
58 |
from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN, PRIVATE_REPO
|
59 |
from src.populate import get_evaluation_queue_df, get_leaderboard_df
|
60 |
from src.submission.submit import add_new_eval, PLACEHOLDER_DATASET_WISE_NORMALIZATION_CONFIG
|
@@ -106,6 +121,24 @@ _, healthbench_hard_original_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQ
|
|
106 |
healthbench_hard_leaderboard_df = healthbench_hard_original_df.copy()
|
107 |
|
108 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
109 |
# breakpoint()
|
110 |
# # Token based results
|
111 |
# _, token_based_datasets_original_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, DATASET_COLS, DATASET_BENCHMARK_COLS, "TokenBasedWithMacroAverage", "datasets")
|
@@ -121,7 +154,7 @@ healthbench_hard_leaderboard_df = healthbench_hard_original_df.copy()
|
|
121 |
pending_eval_queue_df,
|
122 |
) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)
|
123 |
|
124 |
-
|
125 |
def update_df(shown_columns, subset="datasets"):
|
126 |
# changes to be made here
|
127 |
if subset == "datasets":
|
@@ -148,16 +181,27 @@ def update_df(shown_columns, subset="datasets"):
|
|
148 |
elif subset == "healthbench_hard":
|
149 |
leaderboard_table_df = healthbench_hard_leaderboard_df.copy()
|
150 |
hidden_leader_board_df = healthbench_hard_original_df
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
161 |
|
162 |
|
163 |
value_cols = [c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns
|
@@ -267,128 +311,132 @@ def filter_models(
|
|
267 |
demo = gr.Blocks(css=custom_css)
|
268 |
with demo:
|
269 |
print("hello")
|
270 |
-
if PRIVATE_REPO:
|
271 |
-
gr.HTML(TITLE)
|
272 |
gr.HTML(LOGO)
|
273 |
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
|
274 |
|
275 |
with gr.Tabs(elem_classes="tab-buttons") as tabs:
|
276 |
with gr.TabItem("🏅 Open Ended Evaluation", elem_id="llm-benchmark-tab-table", id=1):
|
277 |
-
with gr.
|
278 |
-
|
279 |
-
|
280 |
-
|
281 |
-
|
282 |
-
|
283 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
284 |
)
|
285 |
-
|
286 |
-
|
287 |
-
|
288 |
-
|
289 |
-
|
290 |
-
|
291 |
-
if c.displayed_by_default and not c.hidden and not c.never_hidden and (c.invariant or c.open_ended_col)
|
292 |
-
],
|
293 |
-
label="Select columns to show",
|
294 |
-
elem_id="column-select",
|
295 |
-
interactive=True,
|
296 |
)
|
297 |
-
# with gr.Row():
|
298 |
-
# deleted_models_visibility = gr.Checkbox(
|
299 |
-
# value=False, label="Show gated/private/deleted models", interactive=True
|
300 |
-
# )
|
301 |
-
with gr.Column(min_width=320):
|
302 |
-
# with gr.Box(elem_id="box-filter"):
|
303 |
-
filter_columns_type = gr.CheckboxGroup(
|
304 |
-
label="Model Types",
|
305 |
-
choices=[t.to_str() for t in ModelType],
|
306 |
-
value=[t.to_str() for t in ModelType],
|
307 |
-
interactive=True,
|
308 |
-
elem_id="filter-columns-type",
|
309 |
-
)
|
310 |
-
# filter_columns_architecture = gr.CheckboxGroup(
|
311 |
-
# label="Architecture Types",
|
312 |
-
# choices=[i.value.name for i in ModelArch],
|
313 |
-
# value=[i.value.name for i in ModelArch],
|
314 |
-
# interactive=True,
|
315 |
-
# elem_id="filter-columns-architecture",
|
316 |
-
# )
|
317 |
-
filter_domain_specific = gr.CheckboxGroup(
|
318 |
-
label="Domain Specificity",
|
319 |
-
choices=["🏥 Clinical models", "Generic models"],
|
320 |
-
value=["🏥 Clinical models", "Generic models"],
|
321 |
-
interactive=True,
|
322 |
-
elem_id="filter-columns-type",
|
323 |
-
)
|
324 |
-
filter_columns_size = gr.CheckboxGroup(
|
325 |
-
label="Model sizes (in billions of parameters)",
|
326 |
-
choices=list(NUMERIC_INTERVALS.keys()),
|
327 |
-
value=list(NUMERIC_INTERVALS.keys()),
|
328 |
-
interactive=True,
|
329 |
-
elem_id="filter-columns-size",
|
330 |
-
)
|
331 |
|
332 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
333 |
|
334 |
-
|
335 |
-
|
336 |
-
|
337 |
-
|
338 |
-
|
339 |
-
|
340 |
-
|
341 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
342 |
|
343 |
-
|
344 |
-
|
345 |
-
|
346 |
-
|
347 |
-
|
348 |
-
visible=False,
|
349 |
-
)
|
350 |
|
351 |
-
|
352 |
-
search_bar.submit(
|
353 |
-
update_table,
|
354 |
-
[
|
355 |
-
hidden_leaderboard_table_for_search,
|
356 |
-
shown_columns,
|
357 |
-
search_bar,
|
358 |
-
filter_columns_type,
|
359 |
-
filter_domain_specific,
|
360 |
-
filter_columns_size
|
361 |
-
# filter_columns_architecture
|
362 |
-
],
|
363 |
-
leaderboard_table,
|
364 |
-
)
|
365 |
-
for selector in [
|
366 |
-
shown_columns,
|
367 |
-
filter_columns_type,
|
368 |
-
filter_domain_specific,
|
369 |
-
# filter_columns_architecture,
|
370 |
-
filter_columns_size,
|
371 |
-
# deleted_models_visibility,
|
372 |
-
]:
|
373 |
-
selector.change(
|
374 |
-
update_table,
|
375 |
-
[
|
376 |
-
hidden_leaderboard_table_for_search,
|
377 |
-
shown_columns,
|
378 |
-
search_bar,
|
379 |
-
filter_columns_type,
|
380 |
-
filter_domain_specific,
|
381 |
-
filter_columns_size
|
382 |
-
# filter_columns_architecture,
|
383 |
-
],
|
384 |
-
leaderboard_table,
|
385 |
-
queue=True,
|
386 |
-
)
|
387 |
-
with gr.Accordion("💬 Generation templates", open=False):
|
388 |
-
with gr.Accordion("Response generation", open=False):
|
389 |
-
system_prompt, user_prompt = render_generation_templates(task="open_ended", generation_type="response_generation")
|
390 |
-
with gr.Accordion("Scoring Rubric", open=False):
|
391 |
-
system_prompt, user_prompt = render_generation_templates(task="open_ended", generation_type="scoring_rubric")
|
392 |
with gr.TabItem("🏅 Medical Summarization", elem_id="llm-benchmark-tab-table", id=2):
|
393 |
gr.Markdown(CROSS_EVALUATION_METRICS, elem_classes="markdown-text")
|
394 |
with gr.Row():
|
@@ -506,6 +554,7 @@ with demo:
|
|
506 |
system_prompt, user_prompt = render_generation_templates(task="ce", generation_type="question_generation")
|
507 |
with gr.Accordion("Cross Examination", open=False):
|
508 |
system_prompt, user_prompt = render_generation_templates(task="ce", generation_type="cross_examination")
|
|
|
509 |
with gr.TabItem("🏅 Note generation", elem_id="llm-benchmark-tab-table", id=3):
|
510 |
gr.Markdown(NOTE_GENERATION_METRICS, elem_classes="markdown-text")
|
511 |
with gr.Tabs(elem_classes="tab-buttons2") as tabs:
|
@@ -736,6 +785,7 @@ with demo:
|
|
736 |
system_prompt, user_prompt = render_generation_templates(task="ce", generation_type="question_generation")
|
737 |
with gr.Accordion("Cross Examination", open=False):
|
738 |
system_prompt, user_prompt = render_generation_templates(task="ce", generation_type="cross_examination")
|
|
|
739 |
with gr.TabItem("🏅 HealthBench", elem_id="llm-benchmark-tab-table", id=4):
|
740 |
gr.Markdown(HEALTHBENCH_METRICS, elem_classes="markdown-text")
|
741 |
with gr.Tabs(elem_classes="tab-buttons2") as tabs:
|
@@ -1073,7 +1123,206 @@ with demo:
|
|
1073 |
with gr.Accordion("Scoring Rubric", open=False):
|
1074 |
system_prompt, user_prompt = render_generation_templates(task="med_safety", generation_type="scoring_rubric")
|
1075 |
|
1076 |
-
with gr.TabItem("🏅 Closed Ended Evaluation", elem_id="llm-benchmark-tab-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1077 |
with gr.Row():
|
1078 |
with gr.Column():
|
1079 |
with gr.Row():
|
@@ -1308,4 +1557,4 @@ with demo:
|
|
1308 |
scheduler = BackgroundScheduler()
|
1309 |
scheduler.add_job(restart_space, "interval", seconds=1800)
|
1310 |
scheduler.start()
|
1311 |
-
demo.queue(default_concurrency_limit=40).launch(allowed_paths=['./assets/'])
|
|
|
53 |
Precision,
|
54 |
WeightType,
|
55 |
fields,
|
56 |
+
render_generation_templates,
|
57 |
+
OpenEndedArabic_COLS,
|
58 |
+
OpenEndedArabic_BENCHMARK_COLS,
|
59 |
+
OpenEndedFrench_COLS,
|
60 |
+
OpenEndedFrench_BENCHMARK_COLS,
|
61 |
+
OpenEndedPortuguese_COLS,
|
62 |
+
OpenEndedPortuguese_BENCHMARK_COLS,
|
63 |
+
OpenEndedRomanian_COLS,
|
64 |
+
OpenEndedRomanian_BENCHMARK_COLS,
|
65 |
+
OpenEndedGreek_COLS,
|
66 |
+
OpenEndedGreek_BENCHMARK_COLS,
|
67 |
+
OpenEndedSpanish_COLS,
|
68 |
+
OpenEndedSpanish_BENCHMARK_COLS,
|
69 |
+
ClosedEndedMultilingual_COLS,
|
70 |
+
ClosedEndedMultilingual_BENCHMARK_COLS,
|
71 |
)
|
72 |
+
|
73 |
from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN, PRIVATE_REPO
|
74 |
from src.populate import get_evaluation_queue_df, get_leaderboard_df
|
75 |
from src.submission.submit import add_new_eval, PLACEHOLDER_DATASET_WISE_NORMALIZATION_CONFIG
|
|
|
121 |
healthbench_hard_leaderboard_df = healthbench_hard_original_df.copy()
|
122 |
|
123 |
|
124 |
+
_, open_ended_arabic_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, OpenEndedArabic_COLS, OpenEndedArabic_BENCHMARK_COLS, "score", "open_ended_arabic")
|
125 |
+
_, open_ended_french_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, OpenEndedFrench_COLS, OpenEndedFrench_BENCHMARK_COLS, "score", "open_ended_french")
|
126 |
+
_, open_ended_portuguese_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, OpenEndedPortuguese_COLS, OpenEndedPortuguese_BENCHMARK_COLS, "score", "open_ended_portuguese")
|
127 |
+
_, open_ended_romanian_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, OpenEndedRomanian_COLS, OpenEndedRomanian_BENCHMARK_COLS, "score", "open_ended_romanian")
|
128 |
+
_, open_ended_greek_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, OpenEndedGreek_COLS, OpenEndedGreek_BENCHMARK_COLS, "score", "open_ended_greek")
|
129 |
+
_, open_ended_spanish_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, OpenEndedSpanish_COLS, OpenEndedSpanish_BENCHMARK_COLS, "score", "open_ended_spanish")
|
130 |
+
_, closed_ended_multilingual_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, ClosedEndedMultilingual_COLS, ClosedEndedMultilingual_BENCHMARK_COLS, "score", "closed_ended_multilingual")
|
131 |
+
|
132 |
+
|
133 |
+
open_ended_arabic_leaderboard_df = open_ended_arabic_df.copy()
|
134 |
+
open_ended_french_leaderboard_df = open_ended_french_df.copy()
|
135 |
+
open_ended_portuguese_leaderboard_df = open_ended_portuguese_df.copy()
|
136 |
+
open_ended_romanian_leaderboard_df = open_ended_romanian_df.copy()
|
137 |
+
open_ended_greek_leaderboard_df = open_ended_greek_df.copy()
|
138 |
+
open_ended_spanish_leaderboard_df = open_ended_spanish_df.copy()
|
139 |
+
closed_ended_multilingual_leaderboard_df = closed_ended_multilingual_df.copy()
|
140 |
+
|
141 |
+
|
142 |
# breakpoint()
|
143 |
# # Token based results
|
144 |
# _, token_based_datasets_original_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, DATASET_COLS, DATASET_BENCHMARK_COLS, "TokenBasedWithMacroAverage", "datasets")
|
|
|
154 |
pending_eval_queue_df,
|
155 |
) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)
|
156 |
|
157 |
+
breakpoint()
|
158 |
def update_df(shown_columns, subset="datasets"):
|
159 |
# changes to be made here
|
160 |
if subset == "datasets":
|
|
|
181 |
elif subset == "healthbench_hard":
|
182 |
leaderboard_table_df = healthbench_hard_leaderboard_df.copy()
|
183 |
hidden_leader_board_df = healthbench_hard_original_df
|
184 |
+
elif subset == "open_ended_arabic":
|
185 |
+
leaderboard_table_df = open_ended_arabic_df.copy()
|
186 |
+
hidden_leader_board_df = open_ended_arabic_df
|
187 |
+
elif subset == "open_ended_french":
|
188 |
+
leaderboard_table_df = open_ended_french_df.copy()
|
189 |
+
hidden_leader_board_df = open_ended_french_df
|
190 |
+
elif subset == "open_ended_portuguese":
|
191 |
+
leaderboard_table_df = open_ended_portuguese_df.copy()
|
192 |
+
hidden_leader_board_df = open_ended_portuguese_df
|
193 |
+
elif subset == "open_ended_romanian":
|
194 |
+
leaderboard_table_df = open_ended_romanian_df.copy()
|
195 |
+
hidden_leader_board_df = open_ended_romanian_df
|
196 |
+
elif subset == "open_ended_greek":
|
197 |
+
leaderboard_table_df = open_ended_greek_df.copy()
|
198 |
+
hidden_leader_board_df = open_ended_greek_df
|
199 |
+
elif subset == "open_ended_spanish":
|
200 |
+
leaderboard_table_df = open_ended_spanish_df.copy()
|
201 |
+
hidden_leader_board_df = open_ended_spanish_df
|
202 |
+
elif subset == "closed_ended_multilingual":
|
203 |
+
leaderboard_table_df = closed_ended_multilingual_df.copy()
|
204 |
+
hidden_leader_board_df = closed_ended_multilingual_df
|
205 |
|
206 |
|
207 |
value_cols = [c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns
|
|
|
311 |
demo = gr.Blocks(css=custom_css)
|
312 |
with demo:
|
313 |
print("hello")
|
|
|
|
|
314 |
gr.HTML(LOGO)
|
315 |
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
|
316 |
|
317 |
with gr.Tabs(elem_classes="tab-buttons") as tabs:
|
318 |
with gr.TabItem("🏅 Open Ended Evaluation", elem_id="llm-benchmark-tab-table", id=1):
|
319 |
+
with gr.Tabs(elem_classes="tab-buttons6") as language_tabs:
|
320 |
+
LANGUAGES = {
|
321 |
+
"🇺🇸 English": "open_ended",
|
322 |
+
"🇦🇪 Arabic": "open_ended_arabic",
|
323 |
+
"🇫🇷 French": "open_ended_french",
|
324 |
+
"🇪🇸 Spanish": "open_ended_spanish",
|
325 |
+
"🇵🇹 Portuguese": "open_ended_portuguese",
|
326 |
+
"🇷🇴 Romanian": "open_ended_romanian",
|
327 |
+
"🇬🇷 Greek": "open_ended_greek",
|
328 |
+
}
|
329 |
+
|
330 |
+
for idx, (label, subset) in enumerate(LANGUAGES.items()):
|
331 |
+
with gr.TabItem(label, elem_id=f"llm-benchmark-tab-open-{subset}", id=idx):
|
332 |
+
# Custom judge information for each language
|
333 |
+
if label == "🇺🇸 English":
|
334 |
+
judge_text = "**Note:** Llama 3.1 70B Instruct has been used as judge for English."
|
335 |
+
else:
|
336 |
+
judge_text = "**Note:** Qwen 2.5 72B Instruct has been used as judge for this language."
|
337 |
+
|
338 |
+
gr.Markdown(judge_text, elem_classes="markdown-text")
|
339 |
+
|
340 |
+
with gr.Row():
|
341 |
+
with gr.Column():
|
342 |
+
with gr.Row():
|
343 |
+
search_bar = gr.Textbox(
|
344 |
+
placeholder=f"🔍 Search for your model in {label}...",
|
345 |
+
show_label=False,
|
346 |
+
elem_id=f"search-bar-{subset}",
|
347 |
+
)
|
348 |
+
with gr.Row():
|
349 |
+
shown_columns = gr.CheckboxGroup(
|
350 |
+
choices=[c.name for c in fields(AutoEvalColumn) if not c.hidden and not c.never_hidden and (c.invariant or c.open_ended_col)],
|
351 |
+
value=[
|
352 |
+
c.name
|
353 |
+
for c in fields(AutoEvalColumn)
|
354 |
+
if c.displayed_by_default and not c.hidden and not c.never_hidden and (c.invariant or c.open_ended_col)
|
355 |
+
],
|
356 |
+
label="Select columns to show",
|
357 |
+
elem_id=f"column-select-{subset}",
|
358 |
+
interactive=True,
|
359 |
+
)
|
360 |
+
with gr.Column(min_width=320):
|
361 |
+
filter_columns_type = gr.CheckboxGroup(
|
362 |
+
label="Model Types",
|
363 |
+
choices=[t.to_str() for t in ModelType],
|
364 |
+
value=[t.to_str() for t in ModelType],
|
365 |
+
interactive=True,
|
366 |
+
elem_id=f"filter-columns-type-{subset}",
|
367 |
+
)
|
368 |
+
filter_domain_specific = gr.CheckboxGroup(
|
369 |
+
label="Domain Specificity",
|
370 |
+
choices=["🏥 Clinical models", "Generic models"],
|
371 |
+
value=["🏥 Clinical models", "Generic models"],
|
372 |
+
interactive=True,
|
373 |
+
elem_id=f"filter-columns-domain-{subset}",
|
374 |
+
)
|
375 |
+
filter_columns_size = gr.CheckboxGroup(
|
376 |
+
label="Model sizes (in billions of parameters)",
|
377 |
+
choices=list(NUMERIC_INTERVALS.keys()),
|
378 |
+
value=list(NUMERIC_INTERVALS.keys()),
|
379 |
+
interactive=True,
|
380 |
+
elem_id=f"filter-columns-size-{subset}",
|
381 |
+
)
|
382 |
+
|
383 |
+
datasets_leaderboard_df, datasets_original_df = update_df(shown_columns.value, subset=subset)
|
384 |
+
|
385 |
+
leaderboard_table = gr.Dataframe(
|
386 |
+
value=datasets_leaderboard_df[[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value],
|
387 |
+
headers=[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value,
|
388 |
+
datatype=TYPES,
|
389 |
+
elem_id=f"leaderboard-table-{subset}",
|
390 |
+
interactive=False,
|
391 |
+
visible=True,
|
392 |
)
|
393 |
+
|
394 |
+
hidden_leaderboard_table_for_search = gr.Dataframe(
|
395 |
+
value=datasets_original_df[OPEN_ENDED_COLS],
|
396 |
+
headers=OPEN_ENDED_COLS,
|
397 |
+
datatype=TYPES,
|
398 |
+
visible=False,
|
|
|
|
|
|
|
|
|
|
|
399 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
400 |
|
401 |
+
search_bar.submit(
|
402 |
+
update_table,
|
403 |
+
[
|
404 |
+
hidden_leaderboard_table_for_search,
|
405 |
+
shown_columns,
|
406 |
+
search_bar,
|
407 |
+
filter_columns_type,
|
408 |
+
filter_domain_specific,
|
409 |
+
filter_columns_size
|
410 |
+
],
|
411 |
+
leaderboard_table,
|
412 |
+
)
|
413 |
|
414 |
+
for selector in [
|
415 |
+
shown_columns,
|
416 |
+
filter_columns_type,
|
417 |
+
filter_domain_specific,
|
418 |
+
filter_columns_size,
|
419 |
+
]:
|
420 |
+
selector.change(
|
421 |
+
update_table,
|
422 |
+
[
|
423 |
+
hidden_leaderboard_table_for_search,
|
424 |
+
shown_columns,
|
425 |
+
search_bar,
|
426 |
+
filter_columns_type,
|
427 |
+
filter_domain_specific,
|
428 |
+
filter_columns_size
|
429 |
+
],
|
430 |
+
leaderboard_table,
|
431 |
+
queue=True,
|
432 |
+
)
|
433 |
|
434 |
+
with gr.Accordion("💬 Generation templates", open=False):
|
435 |
+
with gr.Accordion("Response generation", open=False):
|
436 |
+
render_generation_templates(task="open_ended", generation_type="response_generation")
|
437 |
+
with gr.Accordion("Scoring Rubric", open=False):
|
438 |
+
render_generation_templates(task="open_ended", generation_type="scoring_rubric")
|
|
|
|
|
439 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
440 |
with gr.TabItem("🏅 Medical Summarization", elem_id="llm-benchmark-tab-table", id=2):
|
441 |
gr.Markdown(CROSS_EVALUATION_METRICS, elem_classes="markdown-text")
|
442 |
with gr.Row():
|
|
|
554 |
system_prompt, user_prompt = render_generation_templates(task="ce", generation_type="question_generation")
|
555 |
with gr.Accordion("Cross Examination", open=False):
|
556 |
system_prompt, user_prompt = render_generation_templates(task="ce", generation_type="cross_examination")
|
557 |
+
|
558 |
with gr.TabItem("🏅 Note generation", elem_id="llm-benchmark-tab-table", id=3):
|
559 |
gr.Markdown(NOTE_GENERATION_METRICS, elem_classes="markdown-text")
|
560 |
with gr.Tabs(elem_classes="tab-buttons2") as tabs:
|
|
|
785 |
system_prompt, user_prompt = render_generation_templates(task="ce", generation_type="question_generation")
|
786 |
with gr.Accordion("Cross Examination", open=False):
|
787 |
system_prompt, user_prompt = render_generation_templates(task="ce", generation_type="cross_examination")
|
788 |
+
|
789 |
with gr.TabItem("🏅 HealthBench", elem_id="llm-benchmark-tab-table", id=4):
|
790 |
gr.Markdown(HEALTHBENCH_METRICS, elem_classes="markdown-text")
|
791 |
with gr.Tabs(elem_classes="tab-buttons2") as tabs:
|
|
|
1123 |
with gr.Accordion("Scoring Rubric", open=False):
|
1124 |
system_prompt, user_prompt = render_generation_templates(task="med_safety", generation_type="scoring_rubric")
|
1125 |
|
1126 |
+
with gr.TabItem("🏅 Closed Ended Evaluation", elem_id="llm-benchmark-tab-closed", id=6):
|
1127 |
+
with gr.Tabs(elem_classes="tab-buttons2") as closed_tabs:
|
1128 |
+
# ENGLISH TAB
|
1129 |
+
with gr.TabItem("English", elem_id="llm-benchmark-tab-closed-english", id=0):
|
1130 |
+
with gr.Row():
|
1131 |
+
with gr.Column():
|
1132 |
+
with gr.Row():
|
1133 |
+
search_bar = gr.Textbox(
|
1134 |
+
placeholder=" 🔍 Search for your model (separate multiple queries with `;`) and press ENTER...",
|
1135 |
+
show_label=False,
|
1136 |
+
elem_id="search-bar-closed-english",
|
1137 |
+
)
|
1138 |
+
with gr.Row():
|
1139 |
+
shown_columns = gr.CheckboxGroup(
|
1140 |
+
choices=[c.name for c in fields(AutoEvalColumn) if not c.hidden and not c.never_hidden and (c.invariant or c.dataset_task_col)],
|
1141 |
+
value=[
|
1142 |
+
c.name
|
1143 |
+
for c in fields(AutoEvalColumn)
|
1144 |
+
if c.displayed_by_default and not c.hidden and not c.never_hidden and (c.invariant or c.dataset_task_col)
|
1145 |
+
],
|
1146 |
+
label="Select columns to show",
|
1147 |
+
elem_id="column-select-closed-english",
|
1148 |
+
interactive=True,
|
1149 |
+
)
|
1150 |
+
with gr.Column(min_width=320):
|
1151 |
+
filter_columns_type = gr.CheckboxGroup(
|
1152 |
+
label="Model Types",
|
1153 |
+
choices=[t.to_str() for t in ModelType],
|
1154 |
+
value=[t.to_str() for t in ModelType],
|
1155 |
+
interactive=True,
|
1156 |
+
elem_id="filter-columns-type-closed-english",
|
1157 |
+
)
|
1158 |
+
filter_domain_specific = gr.CheckboxGroup(
|
1159 |
+
label="Domain Specificity",
|
1160 |
+
choices=["🏥 Clinical models", "Generic models"],
|
1161 |
+
value=["🏥 Clinical models", "Generic models"],
|
1162 |
+
interactive=True,
|
1163 |
+
elem_id="filter-domain-specific-closed-english",
|
1164 |
+
)
|
1165 |
+
filter_columns_size = gr.CheckboxGroup(
|
1166 |
+
label="Model sizes (in billions of parameters)",
|
1167 |
+
choices=list(NUMERIC_INTERVALS.keys()),
|
1168 |
+
value=list(NUMERIC_INTERVALS.keys()),
|
1169 |
+
interactive=True,
|
1170 |
+
elem_id="filter-columns-size-closed-english",
|
1171 |
+
)
|
1172 |
+
|
1173 |
+
datasets_leaderboard_df, datasets_original_df = update_df(shown_columns.value, subset="datasets")
|
1174 |
+
leaderboard_table = gr.components.Dataframe(
|
1175 |
+
value=datasets_leaderboard_df[[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value],
|
1176 |
+
headers=[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value,
|
1177 |
+
datatype=TYPES,
|
1178 |
+
elem_id="leaderboard-table-english",
|
1179 |
+
interactive=False,
|
1180 |
+
visible=True,
|
1181 |
+
)
|
1182 |
+
|
1183 |
+
# Dummy leaderboard for handling the case when the user uses backspace key
|
1184 |
+
hidden_leaderboard_table_for_search = gr.components.Dataframe(
|
1185 |
+
value=datasets_original_df[DATASET_COLS],
|
1186 |
+
headers=DATASET_COLS,
|
1187 |
+
datatype=TYPES,
|
1188 |
+
visible=False,
|
1189 |
+
)
|
1190 |
+
|
1191 |
+
search_bar.submit(
|
1192 |
+
update_table,
|
1193 |
+
[
|
1194 |
+
hidden_leaderboard_table_for_search,
|
1195 |
+
shown_columns,
|
1196 |
+
search_bar,
|
1197 |
+
filter_columns_type,
|
1198 |
+
filter_domain_specific,
|
1199 |
+
filter_columns_size
|
1200 |
+
],
|
1201 |
+
leaderboard_table,
|
1202 |
+
)
|
1203 |
+
|
1204 |
+
for selector in [
|
1205 |
+
shown_columns,
|
1206 |
+
filter_columns_type,
|
1207 |
+
filter_domain_specific,
|
1208 |
+
filter_columns_size,
|
1209 |
+
]:
|
1210 |
+
selector.change(
|
1211 |
+
update_table,
|
1212 |
+
[
|
1213 |
+
hidden_leaderboard_table_for_search,
|
1214 |
+
shown_columns,
|
1215 |
+
search_bar,
|
1216 |
+
filter_columns_type,
|
1217 |
+
filter_domain_specific,
|
1218 |
+
filter_columns_size
|
1219 |
+
],
|
1220 |
+
leaderboard_table,
|
1221 |
+
queue=True,
|
1222 |
+
)
|
1223 |
+
|
1224 |
+
#MULTILINGUAL TAB - Same level as English tab
|
1225 |
+
with gr.TabItem("🌍 Multilingual", elem_id="llm-benchmark-tab-table9", id=1):
|
1226 |
+
with gr.Row():
|
1227 |
+
gr.Markdown("📊 **Dataset Information:** This tab uses the Global MMLU dataset filtering only the subcategory: medical (10.7%)")
|
1228 |
+
|
1229 |
+
with gr.Row():
|
1230 |
+
with gr.Column():
|
1231 |
+
with gr.Row():
|
1232 |
+
search_bar = gr.Textbox(
|
1233 |
+
placeholder=" 🔍 Search for your model (separate multiple queries with `;`) and press ENTER...",
|
1234 |
+
show_label=False,
|
1235 |
+
elem_id="search-bar",
|
1236 |
+
)
|
1237 |
+
|
1238 |
+
with gr.Row():
|
1239 |
+
shown_columns = gr.CheckboxGroup(
|
1240 |
+
choices=[c.name for c in fields(AutoEvalColumn) if not c.hidden and not c.never_hidden and (c.invariant or c.closed_ended_multilingual_col)],
|
1241 |
+
value=[
|
1242 |
+
c.name
|
1243 |
+
for c in fields(AutoEvalColumn)
|
1244 |
+
if c.displayed_by_default and not c.hidden and not c.never_hidden and (c.invariant or c.closed_ended_multilingual_col)
|
1245 |
+
],
|
1246 |
+
label="Select columns to show",
|
1247 |
+
elem_id="column-select",
|
1248 |
+
interactive=True,
|
1249 |
+
)
|
1250 |
+
with gr.Column(min_width=320):
|
1251 |
+
# with gr.Box(elem_id="box-filter"):
|
1252 |
+
filter_columns_type = gr.CheckboxGroup(
|
1253 |
+
label="Model Types",
|
1254 |
+
choices=[t.to_str() for t in ModelType],
|
1255 |
+
value=[t.to_str() for t in ModelType],
|
1256 |
+
interactive=True,
|
1257 |
+
elem_id="filter-columns-type",
|
1258 |
+
)
|
1259 |
+
filter_domain_specific = gr.CheckboxGroup(
|
1260 |
+
label="Domain Specificity",
|
1261 |
+
choices=["🏥 Clinical models", "Generic models"],
|
1262 |
+
value=["🏥 Clinical models", "Generic models"],
|
1263 |
+
interactive=True,
|
1264 |
+
elem_id="filter-columns-type",
|
1265 |
+
)
|
1266 |
+
filter_columns_size = gr.CheckboxGroup(
|
1267 |
+
label="Model sizes (in billions of parameters)",
|
1268 |
+
choices=list(NUMERIC_INTERVALS.keys()),
|
1269 |
+
value=list(NUMERIC_INTERVALS.keys()),
|
1270 |
+
interactive=True,
|
1271 |
+
elem_id="filter-columns-size",
|
1272 |
+
)
|
1273 |
+
|
1274 |
+
datasets_leaderboard_df, datasets_original_df = update_df(shown_columns.value, subset="closed_ended_multilingual")
|
1275 |
+
leaderboard_table = gr.components.Dataframe(
|
1276 |
+
value=datasets_leaderboard_df[[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value],
|
1277 |
+
headers=[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value,
|
1278 |
+
datatype=TYPES,
|
1279 |
+
elem_id="leaderboard-table",
|
1280 |
+
interactive=False,
|
1281 |
+
visible=True,
|
1282 |
+
)
|
1283 |
+
hidden_leaderboard_table_for_search = gr.components.Dataframe(
|
1284 |
+
value=datasets_original_df[ClosedEndedMultilingual_COLS],
|
1285 |
+
headers=ClosedEndedMultilingual_COLS,
|
1286 |
+
datatype=TYPES,
|
1287 |
+
visible=False,
|
1288 |
+
)
|
1289 |
+
|
1290 |
+
search_bar.submit(
|
1291 |
+
update_table,
|
1292 |
+
[
|
1293 |
+
hidden_leaderboard_table_for_search,
|
1294 |
+
shown_columns,
|
1295 |
+
search_bar,
|
1296 |
+
filter_columns_type,
|
1297 |
+
filter_domain_specific,
|
1298 |
+
filter_columns_size
|
1299 |
+
# filter_columns_architecture
|
1300 |
+
],
|
1301 |
+
leaderboard_table,
|
1302 |
+
)
|
1303 |
+
for selector in [
|
1304 |
+
shown_columns,
|
1305 |
+
filter_columns_type,
|
1306 |
+
filter_domain_specific,
|
1307 |
+
# filter_columns_architecture,
|
1308 |
+
filter_columns_size,
|
1309 |
+
# deleted_models_visibility,
|
1310 |
+
]:
|
1311 |
+
selector.change(
|
1312 |
+
update_table,
|
1313 |
+
[
|
1314 |
+
hidden_leaderboard_table_for_search,
|
1315 |
+
shown_columns,
|
1316 |
+
search_bar,
|
1317 |
+
filter_columns_type,
|
1318 |
+
filter_domain_specific,
|
1319 |
+
filter_columns_size
|
1320 |
+
# filter_columns_architecture,
|
1321 |
+
],
|
1322 |
+
leaderboard_table,
|
1323 |
+
queue=True,
|
1324 |
+
)
|
1325 |
+
|
1326 |
with gr.Row():
|
1327 |
with gr.Column():
|
1328 |
with gr.Row():
|
|
|
1557 |
scheduler = BackgroundScheduler()
|
1558 |
scheduler.add_job(restart_space, "interval", seconds=1800)
|
1559 |
scheduler.start()
|
1560 |
+
demo.queue(default_concurrency_limit=40).launch(allowed_paths=['./assets/'])
|
app_original.py
ADDED
@@ -0,0 +1,1069 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import subprocess
|
2 |
+
|
3 |
+
import gradio as gr
|
4 |
+
import pandas as pd
|
5 |
+
from apscheduler.schedulers.background import BackgroundScheduler
|
6 |
+
from huggingface_hub import snapshot_download
|
7 |
+
|
8 |
+
from src.about import (
|
9 |
+
CITATION_BUTTON_LABEL,
|
10 |
+
CITATION_BUTTON_TEXT,
|
11 |
+
EVALUATION_QUEUE_TEXT,
|
12 |
+
INTRODUCTION_TEXT,
|
13 |
+
LLM_BENCHMARKS_TEXT_1,
|
14 |
+
LLM_BENCHMARKS_TEXT_2,
|
15 |
+
CROSS_EVALUATION_METRICS,
|
16 |
+
NOTE_GENERATION_METRICS,
|
17 |
+
# EVALUATION_EXAMPLE_IMG,
|
18 |
+
# LLM_BENCHMARKS_TEXT_2,
|
19 |
+
# ENTITY_DISTRIBUTION_IMG,
|
20 |
+
# LLM_BENCHMARKS_TEXT_3,
|
21 |
+
TITLE,
|
22 |
+
LOGO,
|
23 |
+
FIVE_PILLAR_DIAGRAM
|
24 |
+
)
|
25 |
+
from src.display.css_html_js import custom_css
|
26 |
+
# changes to be made here
|
27 |
+
from src.display.utils import (
|
28 |
+
DATASET_BENCHMARK_COLS,
|
29 |
+
OPEN_ENDED_BENCHMARK_COLS,
|
30 |
+
MED_SAFETY_BENCHMARK_COLS,
|
31 |
+
MEDICAL_SUMMARIZATION_BENCHMARK_COLS,
|
32 |
+
ACI_BENCHMARK_COLS,
|
33 |
+
SOAP_BENCHMARK_COLS,
|
34 |
+
#CLOSED_ENDED_ARABIC_BENCHMARK_COLS,
|
35 |
+
DATASET_COLS,
|
36 |
+
OPEN_ENDED_COLS,
|
37 |
+
MED_SAFETY_COLS,
|
38 |
+
MEDICAL_SUMMARIZATION_COLS,
|
39 |
+
ACI_COLS,
|
40 |
+
SOAP_COLS,
|
41 |
+
#CLOSED_ENDED_ARABIC_COLS,
|
42 |
+
EVAL_COLS,
|
43 |
+
EVAL_TYPES,
|
44 |
+
NUMERIC_INTERVALS,
|
45 |
+
TYPES,
|
46 |
+
AutoEvalColumn,
|
47 |
+
ModelType,
|
48 |
+
ModelArch,
|
49 |
+
PromptTemplateName,
|
50 |
+
Precision,
|
51 |
+
WeightType,
|
52 |
+
fields,
|
53 |
+
render_generation_templates,
|
54 |
+
OpenEndedArabic_COLS,
|
55 |
+
OpenEndedArabic_BENCHMARK_COLS,
|
56 |
+
OpenEndedFrench_COLS,
|
57 |
+
OpenEndedFrench_BENCHMARK_COLS,
|
58 |
+
OpenEndedPortuguese_COLS,
|
59 |
+
OpenEndedPortuguese_BENCHMARK_COLS,
|
60 |
+
OpenEndedRomanian_COLS,
|
61 |
+
OpenEndedRomanian_BENCHMARK_COLS,
|
62 |
+
OpenEndedGreek_COLS,
|
63 |
+
OpenEndedGreek_BENCHMARK_COLS,
|
64 |
+
OpenEndedSpanish_COLS,
|
65 |
+
OpenEndedSpanish_BENCHMARK_COLS,
|
66 |
+
ClosedEndedMultilingual_COLS,
|
67 |
+
ClosedEndedMultilingual_BENCHMARK_COLS,
|
68 |
+
|
69 |
+
|
70 |
+
)
|
71 |
+
from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN, PRIVATE_REPO
|
72 |
+
from src.populate import get_evaluation_queue_df, get_leaderboard_df
|
73 |
+
from src.submission.submit import add_new_eval, PLACEHOLDER_DATASET_WISE_NORMALIZATION_CONFIG
|
74 |
+
|
75 |
+
def restart_space():
|
76 |
+
API.restart_space(repo_id=REPO_ID)
|
77 |
+
|
78 |
+
|
79 |
+
try:
|
80 |
+
print(EVAL_REQUESTS_PATH)
|
81 |
+
snapshot_download(
|
82 |
+
repo_id=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
|
83 |
+
)
|
84 |
+
except Exception:
|
85 |
+
restart_space()
|
86 |
+
try:
|
87 |
+
print(EVAL_RESULTS_PATH)
|
88 |
+
snapshot_download(
|
89 |
+
repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
|
90 |
+
)
|
91 |
+
except Exception:
|
92 |
+
restart_space()
|
93 |
+
|
94 |
+
# Span based results
|
95 |
+
# changes to be made here
|
96 |
+
|
97 |
+
_, harness_datasets_original_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, DATASET_COLS, DATASET_BENCHMARK_COLS, "accuracy", "datasets")
|
98 |
+
harness_datasets_leaderboard_df = harness_datasets_original_df.copy()
|
99 |
+
print("Closed ended English results loaded")
|
100 |
+
|
101 |
+
_, open_ended_original_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, OPEN_ENDED_COLS, OPEN_ENDED_BENCHMARK_COLS, "score", "open_ended")
|
102 |
+
open_ended_leaderboard_df = open_ended_original_df.copy()
|
103 |
+
print("Open ended English results loaded")
|
104 |
+
|
105 |
+
_, med_safety_original_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, MED_SAFETY_COLS, MED_SAFETY_BENCHMARK_COLS, "score", "med_safety")
|
106 |
+
med_safety_leaderboard_df = med_safety_original_df.copy()
|
107 |
+
print("Med safety results loaded")
|
108 |
+
|
109 |
+
_, medical_summarization_original_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, MEDICAL_SUMMARIZATION_COLS, MEDICAL_SUMMARIZATION_BENCHMARK_COLS, "score", "medical_summarization")
|
110 |
+
medical_summarization_leaderboard_df = medical_summarization_original_df.copy()
|
111 |
+
print("Medical summarization results loaded")
|
112 |
+
|
113 |
+
_, aci_original_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, ACI_COLS, ACI_BENCHMARK_COLS, "score", "aci")
|
114 |
+
aci_leaderboard_df = aci_original_df.copy()
|
115 |
+
print("ACI results loaded")
|
116 |
+
|
117 |
+
_, soap_original_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, SOAP_COLS, SOAP_BENCHMARK_COLS, "score", "soap")
|
118 |
+
soap_leaderboard_df = soap_original_df.copy()
|
119 |
+
print("SOAP results loaded")
|
120 |
+
|
121 |
+
_, open_ended_arabic_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, OpenEndedArabic_COLS, OpenEndedArabic_BENCHMARK_COLS, "score", "open_ended_arabic")
|
122 |
+
_, open_ended_french_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, OpenEndedFrench_COLS, OpenEndedFrench_BENCHMARK_COLS, "score", "open_ended_french")
|
123 |
+
_, open_ended_portuguese_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, OpenEndedPortuguese_COLS, OpenEndedPortuguese_BENCHMARK_COLS, "score", "open_ended_portuguese")
|
124 |
+
_, open_ended_romanian_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, OpenEndedRomanian_COLS, OpenEndedRomanian_BENCHMARK_COLS, "score", "open_ended_romanian")
|
125 |
+
_, open_ended_greek_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, OpenEndedGreek_COLS, OpenEndedGreek_BENCHMARK_COLS, "score", "open_ended_greek")
|
126 |
+
_, open_ended_spanish_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, OpenEndedSpanish_COLS, OpenEndedSpanish_BENCHMARK_COLS, "score", "open_ended_spanish")
|
127 |
+
print("Open ended multilingual results loaded")
|
128 |
+
|
129 |
+
_, closed_ended_multilingual_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, ClosedEndedMultilingual_COLS, ClosedEndedMultilingual_BENCHMARK_COLS, "score", "closed_ended_multilingual")
|
130 |
+
print("Closed ended multilingual results loaded")
|
131 |
+
|
132 |
+
|
133 |
+
open_ended_arabic_leaderboard_df = open_ended_arabic_df.copy()
|
134 |
+
open_ended_french_leaderboard_df = open_ended_french_df.copy()
|
135 |
+
open_ended_portuguese_leaderboard_df = open_ended_portuguese_df.copy()
|
136 |
+
open_ended_romanian_leaderboard_df = open_ended_romanian_df.copy()
|
137 |
+
open_ended_greek_leaderboard_df = open_ended_greek_df.copy()
|
138 |
+
open_ended_spanish_leaderboard_df = open_ended_spanish_df.copy()
|
139 |
+
closed_ended_multilingual_leaderboard_df = closed_ended_multilingual_df.copy()
|
140 |
+
|
141 |
+
|
142 |
+
# if PRIVATE_REPO:
|
143 |
+
# _, closed_ended_arabic_original_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, CLOSED_ENDED_ARABIC_COLS, CLOSED_ENDED_ARABIC_BENCHMARK_COLS, "score", "closed_ended_arabic")
|
144 |
+
# closed_ended_arabic_leaderboard_df = closed_ended_arabic_original_df.copy()
|
145 |
+
|
146 |
+
# breakpoint()
|
147 |
+
# # Token based results
|
148 |
+
# _, token_based_datasets_original_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, DATASET_COLS, DATASET_BENCHMARK_COLS, "TokenBasedWithMacroAverage", "datasets")
|
149 |
+
# token_based_datasets_leaderboard_df = token_based_datasets_original_df.copy()
|
150 |
+
|
151 |
+
# _, token_based_types_original_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, Clinical_TYPES_COLS, TYPES_BENCHMARK_COLS, "TokenBasedWithMacroAverage", "clinical_types")
|
152 |
+
# token_based_types_leaderboard_df = token_based_types_original_df.copy()
|
153 |
+
|
154 |
+
|
155 |
+
(
|
156 |
+
finished_eval_queue_df,
|
157 |
+
running_eval_queue_df,
|
158 |
+
pending_eval_queue_df,
|
159 |
+
) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)
|
160 |
+
|
161 |
+
breakpoint()
|
162 |
+
def update_df(shown_columns, subset="datasets"):
|
163 |
+
# changes to be made here
|
164 |
+
if subset == "datasets":
|
165 |
+
leaderboard_table_df = harness_datasets_leaderboard_df.copy()
|
166 |
+
hidden_leader_board_df = harness_datasets_original_df
|
167 |
+
elif subset == "open_ended":
|
168 |
+
leaderboard_table_df = open_ended_leaderboard_df.copy()
|
169 |
+
hidden_leader_board_df = open_ended_original_df
|
170 |
+
elif subset == "med_safety":
|
171 |
+
leaderboard_table_df = med_safety_leaderboard_df.copy()
|
172 |
+
hidden_leader_board_df = med_safety_original_df
|
173 |
+
elif subset == "medical_summarization":
|
174 |
+
leaderboard_table_df = medical_summarization_leaderboard_df.copy()
|
175 |
+
hidden_leader_board_df = medical_summarization_original_df
|
176 |
+
elif subset == "aci":
|
177 |
+
leaderboard_table_df = aci_leaderboard_df.copy()
|
178 |
+
hidden_leader_board_df = aci_original_df
|
179 |
+
elif subset == "soap":
|
180 |
+
leaderboard_table_df = soap_leaderboard_df.copy()
|
181 |
+
hidden_leader_board_df = soap_original_df
|
182 |
+
elif subset == "open_ended_arabic":
|
183 |
+
leaderboard_table_df = open_ended_arabic_df.copy()
|
184 |
+
hidden_leader_board_df = open_ended_arabic_df
|
185 |
+
elif subset == "open_ended_french":
|
186 |
+
leaderboard_table_df = open_ended_french_df.copy()
|
187 |
+
hidden_leader_board_df = open_ended_french_df
|
188 |
+
elif subset == "open_ended_portuguese":
|
189 |
+
leaderboard_table_df = open_ended_portuguese_df.copy()
|
190 |
+
hidden_leader_board_df = open_ended_portuguese_df
|
191 |
+
elif subset == "open_ended_romanian":
|
192 |
+
leaderboard_table_df = open_ended_romanian_df.copy()
|
193 |
+
hidden_leader_board_df = open_ended_romanian_df
|
194 |
+
elif subset == "open_ended_greek":
|
195 |
+
leaderboard_table_df = open_ended_greek_df.copy()
|
196 |
+
hidden_leader_board_df = open_ended_greek_df
|
197 |
+
elif subset == "open_ended_spanish":
|
198 |
+
leaderboard_table_df = open_ended_spanish_df.copy()
|
199 |
+
hidden_leader_board_df = open_ended_spanish_df
|
200 |
+
elif subset == "closed_ended_multilingual":
|
201 |
+
leaderboard_table_df = closed_ended_multilingual_df.copy()
|
202 |
+
hidden_leader_board_df = closed_ended_multilingual_df
|
203 |
+
|
204 |
+
# else:
|
205 |
+
# match evaluation_metric:
|
206 |
+
# case "Span Based":
|
207 |
+
# leaderboard_table_df = span_based_types_leaderboard_df.copy()
|
208 |
+
# hidden_leader_board_df = span_based_types_original_df
|
209 |
+
# case "Token Based":
|
210 |
+
# leaderboard_table_df = token_based_types_leaderboard_df.copy()
|
211 |
+
# hidden_leader_board_df = token_based_types_original_df
|
212 |
+
# case _:
|
213 |
+
# pass
|
214 |
+
|
215 |
+
|
216 |
+
value_cols = [c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns
|
217 |
+
# breakpoint()
|
218 |
+
return leaderboard_table_df[value_cols], hidden_leader_board_df
|
219 |
+
|
220 |
+
|
221 |
+
# Searching and filtering
|
222 |
+
def update_table(
|
223 |
+
hidden_df: pd.DataFrame,
|
224 |
+
columns: list,
|
225 |
+
query: str = "",
|
226 |
+
type_query: list = None,
|
227 |
+
domain_specific_query: list = None,
|
228 |
+
size_query: list = None,
|
229 |
+
precision_query: str = None,
|
230 |
+
show_deleted: bool = False,
|
231 |
+
):
|
232 |
+
# breakpoint()
|
233 |
+
filtered_df = filter_models(hidden_df, type_query, domain_specific_query, size_query, precision_query, show_deleted)
|
234 |
+
# breakpoint()
|
235 |
+
filtered_df = filter_queries(query, filtered_df)
|
236 |
+
# breakpoint()
|
237 |
+
df = select_columns(filtered_df, columns, list(hidden_df.columns))
|
238 |
+
# breakpoint()
|
239 |
+
return df
|
240 |
+
|
241 |
+
|
242 |
+
def search_table(df: pd.DataFrame, query: str) -> pd.DataFrame:
|
243 |
+
return df[(df[AutoEvalColumn.model.name].str.contains(query, case=False))]
|
244 |
+
|
245 |
+
|
246 |
+
def select_columns(df: pd.DataFrame, columns: list, cols:list) -> pd.DataFrame:
|
247 |
+
always_here_cols = [
|
248 |
+
AutoEvalColumn.model_type_symbol.name,
|
249 |
+
AutoEvalColumn.model.name,
|
250 |
+
]
|
251 |
+
# We use COLS to maintain sorting
|
252 |
+
filtered_df = df[always_here_cols + [c for c in cols if c in df.columns and c in columns]]
|
253 |
+
return filtered_df
|
254 |
+
|
255 |
+
|
256 |
+
def filter_queries(query: str, filtered_df: pd.DataFrame) -> pd.DataFrame:
|
257 |
+
final_df = []
|
258 |
+
if query != "":
|
259 |
+
queries = [q.strip() for q in query.split(";")]
|
260 |
+
for _q in queries:
|
261 |
+
_q = _q.strip()
|
262 |
+
if _q != "":
|
263 |
+
temp_filtered_df = search_table(filtered_df, _q)
|
264 |
+
if len(temp_filtered_df) > 0:
|
265 |
+
final_df.append(temp_filtered_df)
|
266 |
+
if len(final_df) > 0:
|
267 |
+
filtered_df = pd.concat(final_df)
|
268 |
+
filtered_df = filtered_df.drop_duplicates(
|
269 |
+
subset=[
|
270 |
+
AutoEvalColumn.model.name,
|
271 |
+
# AutoEvalColumn.precision.name,
|
272 |
+
# AutoEvalColumn.revision.name,
|
273 |
+
]
|
274 |
+
)
|
275 |
+
|
276 |
+
return filtered_df
|
277 |
+
|
278 |
+
|
279 |
+
def filter_models(
|
280 |
+
df: pd.DataFrame, type_query: list, domain_specific_query: list, size_query: list, precision_query: list, show_deleted: bool
|
281 |
+
) -> pd.DataFrame:
|
282 |
+
# Show all models
|
283 |
+
# if show_deleted:
|
284 |
+
# filtered_df = df
|
285 |
+
# else: # Show only still on the hub models
|
286 |
+
# filtered_df = df[df[AutoEvalColumn.still_on_hub.name] == True]
|
287 |
+
|
288 |
+
filtered_df = df
|
289 |
+
|
290 |
+
if type_query is not None:
|
291 |
+
type_name = [t.split(" ")[1] for t in type_query]
|
292 |
+
filtered_df = filtered_df.loc[df[AutoEvalColumn.model_type.name].isin(type_name)]
|
293 |
+
|
294 |
+
if domain_specific_query is not None:
|
295 |
+
domain_specifics = []
|
296 |
+
if "🏥 Clinical models" in domain_specific_query:
|
297 |
+
domain_specifics.append(True)
|
298 |
+
if "Generic models" in domain_specific_query:
|
299 |
+
domain_specifics.append(False)
|
300 |
+
filtered_df = filtered_df.loc[df[AutoEvalColumn.is_domain_specific.name].isin(domain_specifics)]
|
301 |
+
|
302 |
+
# if architecture_query is not None:
|
303 |
+
# arch_types = [t for t in architecture_query]
|
304 |
+
# filtered_df = filtered_df.loc[df[AutoEvalColumn.architecture.name].isin(arch_types)]
|
305 |
+
# # filtered_df = filtered_df.loc[df[AutoEvalColumn.architecture.name].isin(architecture_query + ["None"])]
|
306 |
+
|
307 |
+
if precision_query is not None:
|
308 |
+
if AutoEvalColumn.precision.name in df.columns:
|
309 |
+
filtered_df = filtered_df.loc[df[AutoEvalColumn.precision.name].isin(precision_query + ["None"])]
|
310 |
+
|
311 |
+
if size_query is not None:
|
312 |
+
numeric_interval = pd.IntervalIndex(sorted([NUMERIC_INTERVALS[s] for s in size_query]))
|
313 |
+
params_column = pd.to_numeric(df[AutoEvalColumn.params.name], errors="coerce")
|
314 |
+
mask = params_column.apply(lambda x: any(numeric_interval.contains(x)))
|
315 |
+
filtered_df = filtered_df.loc[mask]
|
316 |
+
|
317 |
+
return filtered_df
|
318 |
+
|
319 |
+
|
320 |
+
demo = gr.Blocks(css=custom_css)
|
321 |
+
with demo:
|
322 |
+
print("hello")
|
323 |
+
gr.HTML(LOGO)
|
324 |
+
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
|
325 |
+
with gr.Tabs(elem_classes="tab-buttons") as outer_tabs:
|
326 |
+
with gr.TabItem("🏅 Open Ended Evaluation", elem_id="llm-benchmark-tab-table", id=11):
|
327 |
+
with gr.Tabs(elem_classes="tab-buttons6") as language_tabs:
|
328 |
+
LANGUAGES = {
|
329 |
+
"🇺🇸 English": "open_ended",
|
330 |
+
"🇦🇪 Arabic": "open_ended_arabic",
|
331 |
+
"🇫🇷 French": "open_ended_french",
|
332 |
+
"🇪🇸 Spanish": "open_ended_spanish",
|
333 |
+
"🇵🇹 Portuguese": "open_ended_portuguese",
|
334 |
+
"🇷🇴 Romanian": "open_ended_romanian",
|
335 |
+
"🇬🇷 Greek": "open_ended_greek",
|
336 |
+
}
|
337 |
+
|
338 |
+
for idx, (label, subset) in enumerate(LANGUAGES.items()):
|
339 |
+
with gr.TabItem(label, elem_id=f"llm-benchmark-tab-open-{subset}", id=idx):
|
340 |
+
# Custom judge information for each language
|
341 |
+
if label == "🇺🇸 English":
|
342 |
+
judge_text = "**Note:** Llama 3.1 70B Instruct has been used as judge for English."
|
343 |
+
else:
|
344 |
+
judge_text = "**Note:** Qwen 2.5 72B Instruct has been used as judge for this language."
|
345 |
+
|
346 |
+
gr.Markdown(judge_text, elem_classes="markdown-text")
|
347 |
+
|
348 |
+
with gr.Row():
|
349 |
+
with gr.Column():
|
350 |
+
with gr.Row():
|
351 |
+
search_bar = gr.Textbox(
|
352 |
+
placeholder=f"🔍 Search for your model in {label}...",
|
353 |
+
show_label=False,
|
354 |
+
elem_id=f"search-bar-{subset}",
|
355 |
+
)
|
356 |
+
with gr.Row():
|
357 |
+
shown_columns = gr.CheckboxGroup(
|
358 |
+
choices=[c.name for c in fields(AutoEvalColumn) if not c.hidden and not c.never_hidden and (c.invariant or c.open_ended_col)],
|
359 |
+
value=[
|
360 |
+
c.name
|
361 |
+
for c in fields(AutoEvalColumn)
|
362 |
+
if c.displayed_by_default and not c.hidden and not c.never_hidden and (c.invariant or c.open_ended_col)
|
363 |
+
],
|
364 |
+
label="Select columns to show",
|
365 |
+
elem_id=f"column-select-{subset}",
|
366 |
+
interactive=True,
|
367 |
+
)
|
368 |
+
with gr.Column(min_width=320):
|
369 |
+
filter_columns_type = gr.CheckboxGroup(
|
370 |
+
label="Model Types",
|
371 |
+
choices=[t.to_str() for t in ModelType],
|
372 |
+
value=[t.to_str() for t in ModelType],
|
373 |
+
interactive=True,
|
374 |
+
elem_id=f"filter-columns-type-{subset}",
|
375 |
+
)
|
376 |
+
filter_domain_specific = gr.CheckboxGroup(
|
377 |
+
label="Domain Specificity",
|
378 |
+
choices=["🏥 Clinical models", "Generic models"],
|
379 |
+
value=["🏥 Clinical models", "Generic models"],
|
380 |
+
interactive=True,
|
381 |
+
elem_id=f"filter-columns-domain-{subset}",
|
382 |
+
)
|
383 |
+
filter_columns_size = gr.CheckboxGroup(
|
384 |
+
label="Model sizes (in billions of parameters)",
|
385 |
+
choices=list(NUMERIC_INTERVALS.keys()),
|
386 |
+
value=list(NUMERIC_INTERVALS.keys()),
|
387 |
+
interactive=True,
|
388 |
+
elem_id=f"filter-columns-size-{subset}",
|
389 |
+
)
|
390 |
+
|
391 |
+
datasets_leaderboard_df, datasets_original_df = update_df(shown_columns.value, subset=subset)
|
392 |
+
|
393 |
+
leaderboard_table = gr.Dataframe(
|
394 |
+
value=datasets_leaderboard_df[[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value],
|
395 |
+
headers=[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value,
|
396 |
+
datatype=TYPES,
|
397 |
+
elem_id=f"leaderboard-table-{subset}",
|
398 |
+
interactive=False,
|
399 |
+
visible=True,
|
400 |
+
)
|
401 |
+
|
402 |
+
hidden_leaderboard_table_for_search = gr.Dataframe(
|
403 |
+
value=datasets_original_df[OPEN_ENDED_COLS],
|
404 |
+
headers=OPEN_ENDED_COLS,
|
405 |
+
datatype=TYPES,
|
406 |
+
visible=False,
|
407 |
+
)
|
408 |
+
|
409 |
+
search_bar.submit(
|
410 |
+
update_table,
|
411 |
+
[
|
412 |
+
hidden_leaderboard_table_for_search,
|
413 |
+
shown_columns,
|
414 |
+
search_bar,
|
415 |
+
filter_columns_type,
|
416 |
+
filter_domain_specific,
|
417 |
+
filter_columns_size
|
418 |
+
],
|
419 |
+
leaderboard_table,
|
420 |
+
)
|
421 |
+
|
422 |
+
for selector in [
|
423 |
+
shown_columns,
|
424 |
+
filter_columns_type,
|
425 |
+
filter_domain_specific,
|
426 |
+
filter_columns_size,
|
427 |
+
]:
|
428 |
+
selector.change(
|
429 |
+
update_table,
|
430 |
+
[
|
431 |
+
hidden_leaderboard_table_for_search,
|
432 |
+
shown_columns,
|
433 |
+
search_bar,
|
434 |
+
filter_columns_type,
|
435 |
+
filter_domain_specific,
|
436 |
+
filter_columns_size
|
437 |
+
],
|
438 |
+
leaderboard_table,
|
439 |
+
queue=True,
|
440 |
+
)
|
441 |
+
|
442 |
+
with gr.Accordion("💬 Generation templates", open=False):
|
443 |
+
with gr.Accordion("Response generation", open=False):
|
444 |
+
render_generation_templates(task="open_ended", generation_type="response_generation")
|
445 |
+
with gr.Accordion("Scoring Rubric", open=False):
|
446 |
+
render_generation_templates(task="open_ended", generation_type="scoring_rubric")
|
447 |
+
|
448 |
+
with gr.TabItem("🏅 Med Safety", elem_id="llm-benchmark-tab-table", id=2):
|
449 |
+
with gr.Row():
|
450 |
+
with gr.Column():
|
451 |
+
with gr.Row():
|
452 |
+
search_bar = gr.Textbox(
|
453 |
+
placeholder=" 🔍 Search for your model (separate multiple queries with `;`) and press ENTER...",
|
454 |
+
show_label=False,
|
455 |
+
elem_id="search-bar-med-safety",
|
456 |
+
)
|
457 |
+
with gr.Row():
|
458 |
+
shown_columns = gr.CheckboxGroup(
|
459 |
+
choices=[c.name for c in fields(AutoEvalColumn) if not c.hidden and not c.never_hidden and (c.invariant or c.med_safety_col)],
|
460 |
+
value=[
|
461 |
+
c.name
|
462 |
+
for c in fields(AutoEvalColumn)
|
463 |
+
if c.displayed_by_default and not c.hidden and not c.never_hidden and (c.invariant or c.med_safety_col)
|
464 |
+
],
|
465 |
+
label="Select columns to show",
|
466 |
+
elem_id="column-select-med-safety",
|
467 |
+
interactive=True,
|
468 |
+
)
|
469 |
+
with gr.Column(min_width=320):
|
470 |
+
filter_columns_type = gr.CheckboxGroup(
|
471 |
+
label="Model Types",
|
472 |
+
choices=[t.to_str() for t in ModelType],
|
473 |
+
value=[t.to_str() for t in ModelType],
|
474 |
+
interactive=True,
|
475 |
+
elem_id="filter-columns-type-med-safety",
|
476 |
+
)
|
477 |
+
filter_domain_specific = gr.CheckboxGroup(
|
478 |
+
label="Domain Specificity",
|
479 |
+
choices=["🏥 Clinical models", "Generic models"],
|
480 |
+
value=["🏥 Clinical models", "Generic models"],
|
481 |
+
interactive=True,
|
482 |
+
elem_id="filter-domain-specific-med-safety",
|
483 |
+
)
|
484 |
+
filter_columns_size = gr.CheckboxGroup(
|
485 |
+
label="Model sizes (in billions of parameters)",
|
486 |
+
choices=list(NUMERIC_INTERVALS.keys()),
|
487 |
+
value=list(NUMERIC_INTERVALS.keys()),
|
488 |
+
interactive=True,
|
489 |
+
elem_id="filter-columns-size-med-safety",
|
490 |
+
)
|
491 |
+
|
492 |
+
datasets_leaderboard_df, datasets_original_df = update_df(shown_columns.value, subset="med_safety")
|
493 |
+
|
494 |
+
leaderboard_table = gr.Dataframe(
|
495 |
+
value=datasets_leaderboard_df[[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value],
|
496 |
+
headers=[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value,
|
497 |
+
datatype=TYPES,
|
498 |
+
elem_id="leaderboard-table-med-safety",
|
499 |
+
interactive=False,
|
500 |
+
visible=True,
|
501 |
+
)
|
502 |
+
|
503 |
+
hidden_leaderboard_table_for_search = gr.Dataframe(
|
504 |
+
value=datasets_original_df[MED_SAFETY_COLS],
|
505 |
+
headers=MED_SAFETY_COLS,
|
506 |
+
datatype=TYPES,
|
507 |
+
visible=False,
|
508 |
+
)
|
509 |
+
|
510 |
+
search_bar.submit(
|
511 |
+
update_table,
|
512 |
+
[
|
513 |
+
hidden_leaderboard_table_for_search,
|
514 |
+
shown_columns,
|
515 |
+
search_bar,
|
516 |
+
filter_columns_type,
|
517 |
+
filter_domain_specific,
|
518 |
+
filter_columns_size
|
519 |
+
],
|
520 |
+
leaderboard_table,
|
521 |
+
)
|
522 |
+
|
523 |
+
for selector in [
|
524 |
+
shown_columns,
|
525 |
+
filter_columns_type,
|
526 |
+
filter_domain_specific,
|
527 |
+
filter_columns_size,
|
528 |
+
]:
|
529 |
+
selector.change(
|
530 |
+
update_table,
|
531 |
+
[
|
532 |
+
hidden_leaderboard_table_for_search,
|
533 |
+
shown_columns,
|
534 |
+
search_bar,
|
535 |
+
filter_columns_type,
|
536 |
+
filter_domain_specific,
|
537 |
+
filter_columns_size
|
538 |
+
],
|
539 |
+
leaderboard_table,
|
540 |
+
queue=True,
|
541 |
+
)
|
542 |
+
|
543 |
+
with gr.Accordion("💬 Generation templates", open=False):
|
544 |
+
with gr.Accordion("Response generation", open=False):
|
545 |
+
system_prompt, user_prompt = render_generation_templates(task="med_safety", generation_type="response_generation")
|
546 |
+
with gr.Accordion("Scoring Rubric", open=False):
|
547 |
+
system_prompt, user_prompt = render_generation_templates(task="med_safety", generation_type="scoring_rubric")
|
548 |
+
|
549 |
+
with gr.TabItem("🏅 Medical Summarization", elem_id="llm-benchmark-tab-table", id=3):
|
550 |
+
gr.Markdown(CROSS_EVALUATION_METRICS, elem_classes="markdown-text")
|
551 |
+
with gr.Row():
|
552 |
+
with gr.Column():
|
553 |
+
with gr.Row():
|
554 |
+
search_bar = gr.Textbox(
|
555 |
+
placeholder=" 🔍 Search for your model (separate multiple queries with `;`) and press ENTER...",
|
556 |
+
show_label=False,
|
557 |
+
elem_id="search-bar-med-summarization",
|
558 |
+
)
|
559 |
+
with gr.Row():
|
560 |
+
shown_columns = gr.CheckboxGroup(
|
561 |
+
choices=[c.name for c in fields(AutoEvalColumn) if not c.hidden and not c.never_hidden and (c.invariant or c.medical_summarization_col)],
|
562 |
+
value=[
|
563 |
+
c.name
|
564 |
+
for c in fields(AutoEvalColumn)
|
565 |
+
if c.displayed_by_default and not c.hidden and not c.never_hidden and (c.invariant or c.medical_summarization_col)
|
566 |
+
],
|
567 |
+
label="Select columns to show",
|
568 |
+
elem_id="column-select-med-summarization",
|
569 |
+
interactive=True,
|
570 |
+
)
|
571 |
+
with gr.Column(min_width=320):
|
572 |
+
filter_columns_type = gr.CheckboxGroup(
|
573 |
+
label="Model Types",
|
574 |
+
choices=[t.to_str() for t in ModelType],
|
575 |
+
value=[t.to_str() for t in ModelType],
|
576 |
+
interactive=True,
|
577 |
+
elem_id="filter-columns-type-med-summarization",
|
578 |
+
)
|
579 |
+
filter_domain_specific = gr.CheckboxGroup(
|
580 |
+
label="Domain Specificity",
|
581 |
+
choices=["🏥 Clinical models", "Generic models"],
|
582 |
+
value=["🏥 Clinical models", "Generic models"],
|
583 |
+
interactive=True,
|
584 |
+
elem_id="filter-domain-specific-med-summarization",
|
585 |
+
)
|
586 |
+
filter_columns_size = gr.CheckboxGroup(
|
587 |
+
label="Model sizes (in billions of parameters)",
|
588 |
+
choices=list(NUMERIC_INTERVALS.keys()),
|
589 |
+
value=list(NUMERIC_INTERVALS.keys()),
|
590 |
+
interactive=True,
|
591 |
+
elem_id="filter-columns-size-med-summarization",
|
592 |
+
)
|
593 |
+
|
594 |
+
datasets_leaderboard_df, datasets_original_df = update_df(shown_columns.value, subset="medical_summarization")
|
595 |
+
|
596 |
+
leaderboard_table = gr.Dataframe(
|
597 |
+
value=datasets_leaderboard_df[[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value],
|
598 |
+
headers=[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value,
|
599 |
+
datatype=TYPES,
|
600 |
+
elem_id="leaderboard-table-med-summarization",
|
601 |
+
interactive=False,
|
602 |
+
visible=True,
|
603 |
+
)
|
604 |
+
|
605 |
+
hidden_leaderboard_table_for_search = gr.Dataframe(
|
606 |
+
value=datasets_original_df[MEDICAL_SUMMARIZATION_COLS],
|
607 |
+
headers=MEDICAL_SUMMARIZATION_COLS,
|
608 |
+
datatype=TYPES,
|
609 |
+
visible=False,
|
610 |
+
)
|
611 |
+
|
612 |
+
search_bar.submit(
|
613 |
+
update_table,
|
614 |
+
[
|
615 |
+
hidden_leaderboard_table_for_search,
|
616 |
+
shown_columns,
|
617 |
+
search_bar,
|
618 |
+
filter_columns_type,
|
619 |
+
filter_domain_specific,
|
620 |
+
filter_columns_size
|
621 |
+
],
|
622 |
+
leaderboard_table,
|
623 |
+
)
|
624 |
+
|
625 |
+
for selector in [
|
626 |
+
shown_columns,
|
627 |
+
filter_columns_type,
|
628 |
+
filter_domain_specific,
|
629 |
+
filter_columns_size,
|
630 |
+
]:
|
631 |
+
selector.change(
|
632 |
+
update_table,
|
633 |
+
[
|
634 |
+
hidden_leaderboard_table_for_search,
|
635 |
+
shown_columns,
|
636 |
+
search_bar,
|
637 |
+
filter_columns_type,
|
638 |
+
filter_domain_specific,
|
639 |
+
filter_columns_size
|
640 |
+
],
|
641 |
+
leaderboard_table,
|
642 |
+
queue=True,
|
643 |
+
)
|
644 |
+
|
645 |
+
with gr.Accordion("💬 Generation templates", open=False):
|
646 |
+
with gr.Accordion("Response generation", open=False):
|
647 |
+
system_prompt, user_prompt = render_generation_templates(task="medical_summarization", generation_type="response_generation")
|
648 |
+
with gr.Accordion("Question generation", open=False):
|
649 |
+
system_prompt, user_prompt = render_generation_templates(task="ce", generation_type="question_generation")
|
650 |
+
with gr.Accordion("Cross Examination", open=False):
|
651 |
+
system_prompt, user_prompt = render_generation_templates(task="ce", generation_type="cross_examination")
|
652 |
+
|
653 |
+
with gr.TabItem("🏅 Note generation", elem_id="llm-benchmark-tab-table", id=4):
|
654 |
+
gr.Markdown(NOTE_GENERATION_METRICS, elem_classes="markdown-text")
|
655 |
+
with gr.Tabs(elem_classes="tab-buttons2") as note_tabs:
|
656 |
+
with gr.TabItem("ACI Bench", elem_id="llm-benchmark-tab-aci", id=0):
|
657 |
+
with gr.Row():
|
658 |
+
with gr.Column():
|
659 |
+
with gr.Row():
|
660 |
+
search_bar = gr.Textbox(
|
661 |
+
placeholder=" 🔍 Search for your model (separate multiple queries with `;`) and press ENTER...",
|
662 |
+
show_label=False,
|
663 |
+
elem_id="search-bar-aci",
|
664 |
+
)
|
665 |
+
with gr.Row():
|
666 |
+
shown_columns = gr.CheckboxGroup(
|
667 |
+
choices=[c.name for c in fields(AutoEvalColumn) if not c.hidden and not c.never_hidden and (c.invariant or c.aci_col)],
|
668 |
+
value=[
|
669 |
+
c.name
|
670 |
+
for c in fields(AutoEvalColumn)
|
671 |
+
if c.displayed_by_default and not c.hidden and not c.never_hidden and (c.invariant or c.aci_col)
|
672 |
+
],
|
673 |
+
label="Select columns to show",
|
674 |
+
elem_id="column-select-aci",
|
675 |
+
interactive=True,
|
676 |
+
)
|
677 |
+
with gr.Column(min_width=320):
|
678 |
+
filter_columns_type = gr.CheckboxGroup(
|
679 |
+
label="Model Types",
|
680 |
+
choices=[t.to_str() for t in ModelType],
|
681 |
+
value=[t.to_str() for t in ModelType],
|
682 |
+
interactive=True,
|
683 |
+
elem_id="filter-columns-type-aci",
|
684 |
+
)
|
685 |
+
filter_domain_specific = gr.CheckboxGroup(
|
686 |
+
label="Domain Specificity",
|
687 |
+
choices=["🏥 Clinical models", "Generic models"],
|
688 |
+
value=["🏥 Clinical models", "Generic models"],
|
689 |
+
interactive=True,
|
690 |
+
elem_id="filter-domain-specific-aci",
|
691 |
+
)
|
692 |
+
filter_columns_size = gr.CheckboxGroup(
|
693 |
+
label="Model sizes (in billions of parameters)",
|
694 |
+
choices=list(NUMERIC_INTERVALS.keys()),
|
695 |
+
value=list(NUMERIC_INTERVALS.keys()),
|
696 |
+
interactive=True,
|
697 |
+
elem_id="filter-columns-size-aci",
|
698 |
+
)
|
699 |
+
|
700 |
+
datasets_leaderboard_df, datasets_original_df = update_df(shown_columns.value, subset="aci")
|
701 |
+
|
702 |
+
leaderboard_table = gr.Dataframe(
|
703 |
+
value=datasets_leaderboard_df[[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value],
|
704 |
+
headers=[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value,
|
705 |
+
datatype=TYPES,
|
706 |
+
elem_id="leaderboard-table-aci",
|
707 |
+
interactive=False,
|
708 |
+
visible=True,
|
709 |
+
)
|
710 |
+
|
711 |
+
hidden_leaderboard_table_for_search = gr.Dataframe(
|
712 |
+
value=datasets_original_df[ACI_COLS],
|
713 |
+
headers=ACI_COLS,
|
714 |
+
datatype=TYPES,
|
715 |
+
visible=False,
|
716 |
+
)
|
717 |
+
|
718 |
+
search_bar.submit(
|
719 |
+
update_table,
|
720 |
+
[
|
721 |
+
hidden_leaderboard_table_for_search,
|
722 |
+
shown_columns,
|
723 |
+
search_bar,
|
724 |
+
filter_columns_type,
|
725 |
+
filter_domain_specific,
|
726 |
+
filter_columns_size
|
727 |
+
],
|
728 |
+
leaderboard_table,
|
729 |
+
)
|
730 |
+
|
731 |
+
for selector in [
|
732 |
+
shown_columns,
|
733 |
+
filter_columns_type,
|
734 |
+
filter_domain_specific,
|
735 |
+
filter_columns_size,
|
736 |
+
]:
|
737 |
+
selector.change(
|
738 |
+
update_table,
|
739 |
+
[
|
740 |
+
hidden_leaderboard_table_for_search,
|
741 |
+
shown_columns,
|
742 |
+
search_bar,
|
743 |
+
filter_columns_type,
|
744 |
+
filter_domain_specific,
|
745 |
+
filter_columns_size
|
746 |
+
],
|
747 |
+
leaderboard_table,
|
748 |
+
queue=True,
|
749 |
+
)
|
750 |
+
|
751 |
+
with gr.TabItem("SOAP Notes", elem_id="llm-benchmark-tab-soap", id=1):
|
752 |
+
with gr.Row():
|
753 |
+
with gr.Column():
|
754 |
+
with gr.Row():
|
755 |
+
search_bar = gr.Textbox(
|
756 |
+
placeholder=" 🔍 Search for your model (separate multiple queries with `;`) and press ENTER...",
|
757 |
+
show_label=False,
|
758 |
+
elem_id="search-bar-soap",
|
759 |
+
)
|
760 |
+
with gr.Row():
|
761 |
+
shown_columns = gr.CheckboxGroup(
|
762 |
+
choices=[c.name for c in fields(AutoEvalColumn) if not c.hidden and not c.never_hidden and (c.invariant or c.soap_col)],
|
763 |
+
value=[
|
764 |
+
c.name
|
765 |
+
for c in fields(AutoEvalColumn)
|
766 |
+
if c.displayed_by_default and not c.hidden and not c.never_hidden and (c.invariant or c.soap_col)
|
767 |
+
],
|
768 |
+
label="Select columns to show",
|
769 |
+
elem_id="column-select-soap",
|
770 |
+
interactive=True,
|
771 |
+
)
|
772 |
+
with gr.Column(min_width=320):
|
773 |
+
filter_columns_type = gr.CheckboxGroup(
|
774 |
+
label="Model Types",
|
775 |
+
choices=[t.to_str() for t in ModelType],
|
776 |
+
value=[t.to_str() for t in ModelType],
|
777 |
+
interactive=True,
|
778 |
+
elem_id="filter-columns-type-soap",
|
779 |
+
)
|
780 |
+
filter_domain_specific = gr.CheckboxGroup(
|
781 |
+
label="Domain Specificity",
|
782 |
+
choices=["🏥 Clinical models", "Generic models"],
|
783 |
+
value=["🏥 Clinical models", "Generic models"],
|
784 |
+
interactive=True,
|
785 |
+
elem_id="filter-domain-specific-soap",
|
786 |
+
)
|
787 |
+
filter_columns_size = gr.CheckboxGroup(
|
788 |
+
label="Model sizes (in billions of parameters)",
|
789 |
+
choices=list(NUMERIC_INTERVALS.keys()),
|
790 |
+
value=list(NUMERIC_INTERVALS.keys()),
|
791 |
+
interactive=True,
|
792 |
+
elem_id="filter-columns-size-soap",
|
793 |
+
)
|
794 |
+
|
795 |
+
datasets_leaderboard_df, datasets_original_df = update_df(shown_columns.value, subset="soap")
|
796 |
+
|
797 |
+
leaderboard_table = gr.Dataframe(
|
798 |
+
value=datasets_leaderboard_df[[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value],
|
799 |
+
headers=[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value,
|
800 |
+
datatype=TYPES,
|
801 |
+
elem_id="leaderboard-table-soap",
|
802 |
+
interactive=False,
|
803 |
+
visible=True,
|
804 |
+
)
|
805 |
+
|
806 |
+
hidden_leaderboard_table_for_search = gr.Dataframe(
|
807 |
+
value=datasets_original_df[SOAP_COLS],
|
808 |
+
headers=SOAP_COLS,
|
809 |
+
datatype=TYPES,
|
810 |
+
visible=False,
|
811 |
+
)
|
812 |
+
|
813 |
+
search_bar.submit(
|
814 |
+
update_table,
|
815 |
+
[
|
816 |
+
hidden_leaderboard_table_for_search,
|
817 |
+
shown_columns,
|
818 |
+
search_bar,
|
819 |
+
filter_columns_type,
|
820 |
+
filter_domain_specific,
|
821 |
+
filter_columns_size
|
822 |
+
],
|
823 |
+
leaderboard_table,
|
824 |
+
)
|
825 |
+
|
826 |
+
for selector in [
|
827 |
+
shown_columns,
|
828 |
+
filter_columns_type,
|
829 |
+
filter_domain_specific,
|
830 |
+
filter_columns_size,
|
831 |
+
]:
|
832 |
+
selector.change(
|
833 |
+
update_table,
|
834 |
+
[
|
835 |
+
hidden_leaderboard_table_for_search,
|
836 |
+
shown_columns,
|
837 |
+
search_bar,
|
838 |
+
filter_columns_type,
|
839 |
+
filter_domain_specific,
|
840 |
+
filter_columns_size
|
841 |
+
],
|
842 |
+
leaderboard_table,
|
843 |
+
queue=True,
|
844 |
+
)
|
845 |
+
|
846 |
+
with gr.Accordion("💬 Generation templates", open=False):
|
847 |
+
with gr.Accordion("ACI-Bench Response generation", open=False):
|
848 |
+
system_prompt, user_prompt = render_generation_templates(task="aci", generation_type="response_generation")
|
849 |
+
with gr.Accordion("SOAP Notes Response generation", open=False):
|
850 |
+
system_prompt, user_prompt = render_generation_templates(task="soap", generation_type="response_generation")
|
851 |
+
with gr.Accordion("Question generation", open=False):
|
852 |
+
system_prompt, user_prompt = render_generation_templates(task="ce", generation_type="question_generation")
|
853 |
+
with gr.Accordion("Cross Examination", open=False):
|
854 |
+
system_prompt, user_prompt = render_generation_templates(task="ce", generation_type="cross_examination")
|
855 |
+
|
856 |
+
with gr.TabItem("🏅 Closed Ended Evaluation", elem_id="llm-benchmark-tab-closed", id=6):
|
857 |
+
with gr.Tabs(elem_classes="tab-buttons2") as closed_tabs:
|
858 |
+
# ENGLISH TAB
|
859 |
+
with gr.TabItem("English", elem_id="llm-benchmark-tab-closed-english", id=0):
|
860 |
+
with gr.Row():
|
861 |
+
with gr.Column():
|
862 |
+
with gr.Row():
|
863 |
+
search_bar = gr.Textbox(
|
864 |
+
placeholder=" 🔍 Search for your model (separate multiple queries with `;`) and press ENTER...",
|
865 |
+
show_label=False,
|
866 |
+
elem_id="search-bar-closed-english",
|
867 |
+
)
|
868 |
+
with gr.Row():
|
869 |
+
shown_columns = gr.CheckboxGroup(
|
870 |
+
choices=[c.name for c in fields(AutoEvalColumn) if not c.hidden and not c.never_hidden and (c.invariant or c.dataset_task_col)],
|
871 |
+
value=[
|
872 |
+
c.name
|
873 |
+
for c in fields(AutoEvalColumn)
|
874 |
+
if c.displayed_by_default and not c.hidden and not c.never_hidden and (c.invariant or c.dataset_task_col)
|
875 |
+
],
|
876 |
+
label="Select columns to show",
|
877 |
+
elem_id="column-select-closed-english",
|
878 |
+
interactive=True,
|
879 |
+
)
|
880 |
+
with gr.Column(min_width=320):
|
881 |
+
filter_columns_type = gr.CheckboxGroup(
|
882 |
+
label="Model Types",
|
883 |
+
choices=[t.to_str() for t in ModelType],
|
884 |
+
value=[t.to_str() for t in ModelType],
|
885 |
+
interactive=True,
|
886 |
+
elem_id="filter-columns-type-closed-english",
|
887 |
+
)
|
888 |
+
filter_domain_specific = gr.CheckboxGroup(
|
889 |
+
label="Domain Specificity",
|
890 |
+
choices=["🏥 Clinical models", "Generic models"],
|
891 |
+
value=["🏥 Clinical models", "Generic models"],
|
892 |
+
interactive=True,
|
893 |
+
elem_id="filter-domain-specific-closed-english",
|
894 |
+
)
|
895 |
+
filter_columns_size = gr.CheckboxGroup(
|
896 |
+
label="Model sizes (in billions of parameters)",
|
897 |
+
choices=list(NUMERIC_INTERVALS.keys()),
|
898 |
+
value=list(NUMERIC_INTERVALS.keys()),
|
899 |
+
interactive=True,
|
900 |
+
elem_id="filter-columns-size-closed-english",
|
901 |
+
)
|
902 |
+
|
903 |
+
datasets_leaderboard_df, datasets_original_df = update_df(shown_columns.value, subset="datasets")
|
904 |
+
leaderboard_table = gr.components.Dataframe(
|
905 |
+
value=datasets_leaderboard_df[[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value],
|
906 |
+
headers=[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value,
|
907 |
+
datatype=TYPES,
|
908 |
+
elem_id="leaderboard-table-english",
|
909 |
+
interactive=False,
|
910 |
+
visible=True,
|
911 |
+
)
|
912 |
+
|
913 |
+
# Dummy leaderboard for handling the case when the user uses backspace key
|
914 |
+
hidden_leaderboard_table_for_search = gr.components.Dataframe(
|
915 |
+
value=datasets_original_df[DATASET_COLS],
|
916 |
+
headers=DATASET_COLS,
|
917 |
+
datatype=TYPES,
|
918 |
+
visible=False,
|
919 |
+
)
|
920 |
+
|
921 |
+
search_bar.submit(
|
922 |
+
update_table,
|
923 |
+
[
|
924 |
+
hidden_leaderboard_table_for_search,
|
925 |
+
shown_columns,
|
926 |
+
search_bar,
|
927 |
+
filter_columns_type,
|
928 |
+
filter_domain_specific,
|
929 |
+
filter_columns_size
|
930 |
+
],
|
931 |
+
leaderboard_table,
|
932 |
+
)
|
933 |
+
|
934 |
+
for selector in [
|
935 |
+
shown_columns,
|
936 |
+
filter_columns_type,
|
937 |
+
filter_domain_specific,
|
938 |
+
filter_columns_size,
|
939 |
+
]:
|
940 |
+
selector.change(
|
941 |
+
update_table,
|
942 |
+
[
|
943 |
+
hidden_leaderboard_table_for_search,
|
944 |
+
shown_columns,
|
945 |
+
search_bar,
|
946 |
+
filter_columns_type,
|
947 |
+
filter_domain_specific,
|
948 |
+
filter_columns_size
|
949 |
+
],
|
950 |
+
leaderboard_table,
|
951 |
+
queue=True,
|
952 |
+
)
|
953 |
+
|
954 |
+
#MULTILINGUAL TAB - Same level as English tab
|
955 |
+
with gr.TabItem("🌍 Multilingual", elem_id="llm-benchmark-tab-table9", id=1):
|
956 |
+
with gr.Row():
|
957 |
+
gr.Markdown("📊 **Dataset Information:** This tab uses the Global MMLU dataset filtering only the subcategory: medical (10.7%)")
|
958 |
+
|
959 |
+
with gr.Row():
|
960 |
+
with gr.Column():
|
961 |
+
with gr.Row():
|
962 |
+
search_bar = gr.Textbox(
|
963 |
+
placeholder=" 🔍 Search for your model (separate multiple queries with `;`) and press ENTER...",
|
964 |
+
show_label=False,
|
965 |
+
elem_id="search-bar",
|
966 |
+
)
|
967 |
+
|
968 |
+
with gr.Row():
|
969 |
+
shown_columns = gr.CheckboxGroup(
|
970 |
+
choices=[c.name for c in fields(AutoEvalColumn) if not c.hidden and not c.never_hidden and (c.invariant or c.closed_ended_multilingual_col)],
|
971 |
+
value=[
|
972 |
+
c.name
|
973 |
+
for c in fields(AutoEvalColumn)
|
974 |
+
if c.displayed_by_default and not c.hidden and not c.never_hidden and (c.invariant or c.closed_ended_multilingual_col)
|
975 |
+
],
|
976 |
+
label="Select columns to show",
|
977 |
+
elem_id="column-select",
|
978 |
+
interactive=True,
|
979 |
+
)
|
980 |
+
with gr.Column(min_width=320):
|
981 |
+
# with gr.Box(elem_id="box-filter"):
|
982 |
+
filter_columns_type = gr.CheckboxGroup(
|
983 |
+
label="Model Types",
|
984 |
+
choices=[t.to_str() for t in ModelType],
|
985 |
+
value=[t.to_str() for t in ModelType],
|
986 |
+
interactive=True,
|
987 |
+
elem_id="filter-columns-type",
|
988 |
+
)
|
989 |
+
filter_domain_specific = gr.CheckboxGroup(
|
990 |
+
label="Domain Specificity",
|
991 |
+
choices=["🏥 Clinical models", "Generic models"],
|
992 |
+
value=["🏥 Clinical models", "Generic models"],
|
993 |
+
interactive=True,
|
994 |
+
elem_id="filter-columns-type",
|
995 |
+
)
|
996 |
+
filter_columns_size = gr.CheckboxGroup(
|
997 |
+
label="Model sizes (in billions of parameters)",
|
998 |
+
choices=list(NUMERIC_INTERVALS.keys()),
|
999 |
+
value=list(NUMERIC_INTERVALS.keys()),
|
1000 |
+
interactive=True,
|
1001 |
+
elem_id="filter-columns-size",
|
1002 |
+
)
|
1003 |
+
|
1004 |
+
datasets_leaderboard_df, datasets_original_df = update_df(shown_columns.value, subset="closed_ended_multilingual")
|
1005 |
+
leaderboard_table = gr.components.Dataframe(
|
1006 |
+
value=datasets_leaderboard_df[[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value],
|
1007 |
+
headers=[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value,
|
1008 |
+
datatype=TYPES,
|
1009 |
+
elem_id="leaderboard-table",
|
1010 |
+
interactive=False,
|
1011 |
+
visible=True,
|
1012 |
+
)
|
1013 |
+
hidden_leaderboard_table_for_search = gr.components.Dataframe(
|
1014 |
+
value=datasets_original_df[ClosedEndedMultilingual_COLS],
|
1015 |
+
headers=ClosedEndedMultilingual_COLS,
|
1016 |
+
datatype=TYPES,
|
1017 |
+
visible=False,
|
1018 |
+
)
|
1019 |
+
|
1020 |
+
search_bar.submit(
|
1021 |
+
update_table,
|
1022 |
+
[
|
1023 |
+
hidden_leaderboard_table_for_search,
|
1024 |
+
shown_columns,
|
1025 |
+
search_bar,
|
1026 |
+
filter_columns_type,
|
1027 |
+
filter_domain_specific,
|
1028 |
+
filter_columns_size
|
1029 |
+
# filter_columns_architecture
|
1030 |
+
],
|
1031 |
+
leaderboard_table,
|
1032 |
+
)
|
1033 |
+
for selector in [
|
1034 |
+
shown_columns,
|
1035 |
+
filter_columns_type,
|
1036 |
+
filter_domain_specific,
|
1037 |
+
# filter_columns_architecture,
|
1038 |
+
filter_columns_size,
|
1039 |
+
# deleted_models_visibility,
|
1040 |
+
]:
|
1041 |
+
selector.change(
|
1042 |
+
update_table,
|
1043 |
+
[
|
1044 |
+
hidden_leaderboard_table_for_search,
|
1045 |
+
shown_columns,
|
1046 |
+
search_bar,
|
1047 |
+
filter_columns_type,
|
1048 |
+
filter_domain_specific,
|
1049 |
+
filter_columns_size
|
1050 |
+
# filter_columns_architecture,
|
1051 |
+
],
|
1052 |
+
leaderboard_table,
|
1053 |
+
queue=True,
|
1054 |
+
)
|
1055 |
+
|
1056 |
+
with gr.Row():
|
1057 |
+
with gr.Accordion("📙 Citation", open=False):
|
1058 |
+
citation_button = gr.Textbox(
|
1059 |
+
value=CITATION_BUTTON_TEXT,
|
1060 |
+
label=CITATION_BUTTON_LABEL,
|
1061 |
+
lines=20,
|
1062 |
+
elem_id="citation-button",
|
1063 |
+
show_copy_button=True,
|
1064 |
+
)
|
1065 |
+
|
1066 |
+
scheduler = BackgroundScheduler()
|
1067 |
+
scheduler.add_job(restart_space, "interval", seconds=1800)
|
1068 |
+
scheduler.start()
|
1069 |
+
demo.queue(default_concurrency_limit=40).launch(allowed_paths=['./assets/'])
|
src/about.py
CHANGED
@@ -40,6 +40,77 @@ class OpenEndedColumns(Enum):
|
|
40 |
column3 = OpenEndedColumn("Score_intervals", "score", "Score 95% CI")
|
41 |
# changes to be made here
|
42 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
@dataclass
|
44 |
class MedSafetyColumn:
|
45 |
benchmark: str
|
|
|
40 |
column3 = OpenEndedColumn("Score_intervals", "score", "Score 95% CI")
|
41 |
# changes to be made here
|
42 |
|
43 |
+
|
44 |
+
@dataclass
|
45 |
+
class OpenEndedMultilingualColumn:
|
46 |
+
benchmark: str
|
47 |
+
metric: str
|
48 |
+
col_name: str
|
49 |
+
|
50 |
+
class OpenEndedArabicColumn(Enum):
|
51 |
+
# task_key in the json file, metric_key in the json file, name to display in the leaderboard
|
52 |
+
arabic_column0 = OpenEndedMultilingualColumn("ELO", "score", "ELO")
|
53 |
+
arabic_column1 = OpenEndedMultilingualColumn("ELO_intervals", "score", "ELO 95% CI")
|
54 |
+
arabic_column2 = OpenEndedMultilingualColumn("Score", "score", "Score")
|
55 |
+
arabic_column3 = OpenEndedMultilingualColumn("Score_intervals", "score", "Score 95% CI")
|
56 |
+
|
57 |
+
|
58 |
+
class OpenEndedFrenchColumn(Enum):
|
59 |
+
# task_key in the json file, metric_key in the json file, name to display in the leaderboard
|
60 |
+
french_column0 = OpenEndedMultilingualColumn("ELO", "score", "ELO")
|
61 |
+
french_column1 = OpenEndedMultilingualColumn("ELO_intervals", "score", "ELO 95% CI")
|
62 |
+
french_column2 = OpenEndedMultilingualColumn("Score", "score", "Score")
|
63 |
+
french_column3 = OpenEndedMultilingualColumn("Score_intervals", "score", "Score 95% CI")
|
64 |
+
|
65 |
+
|
66 |
+
class OpenEndedSpanishColumn(Enum):
|
67 |
+
# task_key in the json file, metric_key in the json file, name to display in the leaderboard
|
68 |
+
spanish_column0 = OpenEndedMultilingualColumn("ELO", "score", "ELO")
|
69 |
+
spanish_column1 = OpenEndedMultilingualColumn("ELO_intervals", "score", "ELO 95% CI")
|
70 |
+
spanish_column2 = OpenEndedMultilingualColumn("Score", "score", "Score")
|
71 |
+
spanish_column3 = OpenEndedMultilingualColumn("Score_intervals", "score", "Score 95% CI")
|
72 |
+
|
73 |
+
|
74 |
+
class OpenEndedPortugueseColumn(Enum):
|
75 |
+
# task_key in the json file, metric_key in the json file, name to display in the leaderboard
|
76 |
+
porto_column0 = OpenEndedMultilingualColumn("ELO", "score", "ELO")
|
77 |
+
porto_column1 = OpenEndedMultilingualColumn("ELO_intervals", "score", "ELO 95% CI")
|
78 |
+
porto_column2 = OpenEndedMultilingualColumn("Score", "score", "Score")
|
79 |
+
porto_column3 = OpenEndedMultilingualColumn("Score_intervals", "score", "Score 95% CI")
|
80 |
+
|
81 |
+
|
82 |
+
class OpenEndedRomanianColumn(Enum):
|
83 |
+
# task_key in the json file, metric_key in the json file, name to display in the leaderboard
|
84 |
+
rom_column0 = OpenEndedMultilingualColumn("ELO", "score", "ELO")
|
85 |
+
rom_column1 = OpenEndedMultilingualColumn("ELO_intervals", "score", "ELO 95% CI")
|
86 |
+
rom_column2 = OpenEndedMultilingualColumn("Score", "score", "Score")
|
87 |
+
rom_column3 = OpenEndedMultilingualColumn("Score_intervals", "score", "Score 95% CI")
|
88 |
+
|
89 |
+
|
90 |
+
class OpenEndedGreekColumn(Enum):
|
91 |
+
# task_key in the json file, metric_key in the json file, name to display in the leaderboard
|
92 |
+
greek_column0 = OpenEndedMultilingualColumn("ELO", "score", "ELO")
|
93 |
+
greek_column1 = OpenEndedMultilingualColumn("ELO_intervals", "score", "ELO 95% CI")
|
94 |
+
greek_column2 = OpenEndedMultilingualColumn("Score", "score", "Score")
|
95 |
+
greek_column3 = OpenEndedMultilingualColumn("Score_intervals", "score", "Score 95% CI")
|
96 |
+
|
97 |
+
|
98 |
+
|
99 |
+
@dataclass
|
100 |
+
class ClosedEndedMultilingualColumn:
|
101 |
+
benchmark: str
|
102 |
+
metric: str
|
103 |
+
col_name: str
|
104 |
+
|
105 |
+
|
106 |
+
class ClosedEndedMultilingualColumns(Enum):
|
107 |
+
mtask0 = ClosedEndedMultilingualColumn("Global-MMLU-Arabic", "accuracy", "🇦🇪Arabic")
|
108 |
+
mtask1 = ClosedEndedMultilingualColumn("Global-MMLU-French", "accuracy", "🇫🇷French")
|
109 |
+
mtask2 = ClosedEndedMultilingualColumn("Global-MMLU-Spanish", "accuracy", "🇪🇸Spanish")
|
110 |
+
mtask3 = ClosedEndedMultilingualColumn("Global-MMLU-Portuguese", "accuracy", "🇵🇹Portuguese")
|
111 |
+
mtask4 = ClosedEndedMultilingualColumn("Global-MMLU-Romanian", "accuracy", "🇷🇴Romanian")
|
112 |
+
mtask5 = ClosedEndedMultilingualColumn("Global-MMLU-Greek", "accuracy", "🇬🇷Greek")
|
113 |
+
|
114 |
@dataclass
|
115 |
class MedSafetyColumn:
|
116 |
benchmark: str
|
src/display/utils.py
CHANGED
@@ -4,7 +4,7 @@ from enum import Enum
|
|
4 |
import pandas as pd
|
5 |
|
6 |
# changes to be made here
|
7 |
-
from src.about import HarnessTasks, OpenEndedColumns, MedSafetyColumns, MedicalSummarizationColumns, ACIColumns, SOAPColumns, HealthbenchColumns, HealthbenchHardColumns
|
8 |
from src.envs import PRIVATE_REPO
|
9 |
import json
|
10 |
import gradio as gr
|
@@ -34,16 +34,22 @@ class ColumnContent:
|
|
34 |
closed_ended_arabic_col: bool = False
|
35 |
healthbench_col: bool = False
|
36 |
healthbench_hard_col: bool = False
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
|
38 |
|
39 |
## Leaderboard columns
|
40 |
-
auto_eval_column_dict = []
|
41 |
# Init
|
42 |
auto_eval_column_dict = []
|
43 |
auto_eval_column_dict.append(["model_type_symbol", ColumnContent, ColumnContent("T", "str", True, never_hidden=True)])
|
44 |
auto_eval_column_dict.append(["model", ColumnContent, ColumnContent("Model", "markdown", True, never_hidden=True)])
|
45 |
auto_eval_column_dict.append(["revision", ColumnContent, ColumnContent("Model sha", "str", False, True)])
|
46 |
-
auto_eval_column_dict.append(["average", ColumnContent, ColumnContent("Average", "number", True, False, dataset_task_col=True,
|
47 |
auto_eval_column_dict.append(["overall", ColumnContent, ColumnContent("Overall Score", "number", True, False, medical_summarization_col=True, aci_col=True, soap_col=True, invariant=False)])
|
48 |
for task in HarnessTasks:
|
49 |
auto_eval_column_dict.append([task.name, ColumnContent, ColumnContent(task.value.col_name, "number", True, False, dataset_task_col=True, invariant=False)])
|
@@ -72,6 +78,20 @@ for column in HealthbenchHardColumns:
|
|
72 |
auto_eval_column_dict.append([column.name, ColumnContent, ColumnContent(column.value.col_name, "number", False, False, healthbench_hard_col=True, invariant=False)])
|
73 |
else:
|
74 |
auto_eval_column_dict.append([column.name, ColumnContent, ColumnContent(column.value.col_name, "number", True, False, healthbench_hard_col=True, invariant=False)])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
75 |
|
76 |
auto_eval_column_dict.append(["is_domain_specific", ColumnContent, ColumnContent("Is Domain Specific", "bool", False)])
|
77 |
auto_eval_column_dict.append(["use_chat_template", ColumnContent, ColumnContent("Uses Chat Template", "bool", False)])
|
@@ -234,6 +254,27 @@ HEALTHBENCH_COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden and (
|
|
234 |
HEALTHBENCH_HARD_COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden and (c.healthbench_hard_col or c.invariant)]
|
235 |
|
236 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
237 |
TYPES = [c.type for c in fields(AutoEvalColumn) if not c.hidden]
|
238 |
COLS_LITE = [c.name for c in fields(AutoEvalColumn) if c.displayed_by_default and not c.hidden]
|
239 |
TYPES_LITE = [c.type for c in fields(AutoEvalColumn) if c.displayed_by_default and not c.hidden]
|
@@ -251,6 +292,18 @@ SOAP_BENCHMARK_COLS = [t.value.col_name for t in SOAPColumns]
|
|
251 |
HEALTHBENCH_BENCHMARK_COLS = [t.value.col_name for t in HealthbenchColumns]
|
252 |
HEALTHBENCH_HARD_BENCHMARK_COLS = [t.value.col_name for t in HealthbenchHardColumns]
|
253 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
254 |
NUMERIC_INTERVALS = {
|
255 |
"?": pd.Interval(-100, 0, closed="right"),
|
256 |
"~1.5": pd.Interval(0, 2, closed="right"),
|
|
|
4 |
import pandas as pd
|
5 |
|
6 |
# changes to be made here
|
7 |
+
from src.about import HarnessTasks, OpenEndedColumns, MedSafetyColumns, MedicalSummarizationColumns, ACIColumns, SOAPColumns, HealthbenchColumns, HealthbenchHardColumns, ClosedEndedMultilingualColumns, OpenEndedArabicColumn, OpenEndedFrenchColumn, OpenEndedSpanishColumn, OpenEndedPortugueseColumn, OpenEndedRomanianColumn, OpenEndedGreekColumn
|
8 |
from src.envs import PRIVATE_REPO
|
9 |
import json
|
10 |
import gradio as gr
|
|
|
34 |
closed_ended_arabic_col: bool = False
|
35 |
healthbench_col: bool = False
|
36 |
healthbench_hard_col: bool = False
|
37 |
+
open_ended_arabic_col: bool = False
|
38 |
+
open_ended_french_col: bool = False
|
39 |
+
open_ended_spanish_col: bool = False
|
40 |
+
open_ended_portuguese_col: bool = False
|
41 |
+
open_ended_romanian_col: bool = False
|
42 |
+
open_ended_greek_col: bool = False
|
43 |
+
closed_ended_multilingual_col: bool = False
|
44 |
|
45 |
|
46 |
## Leaderboard columns
|
|
|
47 |
# Init
|
48 |
auto_eval_column_dict = []
|
49 |
auto_eval_column_dict.append(["model_type_symbol", ColumnContent, ColumnContent("T", "str", True, never_hidden=True)])
|
50 |
auto_eval_column_dict.append(["model", ColumnContent, ColumnContent("Model", "markdown", True, never_hidden=True)])
|
51 |
auto_eval_column_dict.append(["revision", ColumnContent, ColumnContent("Model sha", "str", False, True)])
|
52 |
+
auto_eval_column_dict.append(["average", ColumnContent, ColumnContent("Average", "number", True, False, dataset_task_col=True, closed_ended_multilingual_col=True, invariant=False)])
|
53 |
auto_eval_column_dict.append(["overall", ColumnContent, ColumnContent("Overall Score", "number", True, False, medical_summarization_col=True, aci_col=True, soap_col=True, invariant=False)])
|
54 |
for task in HarnessTasks:
|
55 |
auto_eval_column_dict.append([task.name, ColumnContent, ColumnContent(task.value.col_name, "number", True, False, dataset_task_col=True, invariant=False)])
|
|
|
78 |
auto_eval_column_dict.append([column.name, ColumnContent, ColumnContent(column.value.col_name, "number", False, False, healthbench_hard_col=True, invariant=False)])
|
79 |
else:
|
80 |
auto_eval_column_dict.append([column.name, ColumnContent, ColumnContent(column.value.col_name, "number", True, False, healthbench_hard_col=True, invariant=False)])
|
81 |
+
for column in OpenEndedArabicColumn:
|
82 |
+
auto_eval_column_dict.append([column.name, ColumnContent, ColumnContent(column.value.col_name, "number", True, False, open_ended_arabic_col=True, invariant=False)])
|
83 |
+
for column in OpenEndedFrenchColumn:
|
84 |
+
auto_eval_column_dict.append([column.name, ColumnContent, ColumnContent(column.value.col_name, "number", True, False, open_ended_french_col=True, invariant=False)])
|
85 |
+
for column in OpenEndedSpanishColumn:
|
86 |
+
auto_eval_column_dict.append([column.name, ColumnContent, ColumnContent(column.value.col_name, "number", True, False, open_ended_spanish_col=True, invariant=False)])
|
87 |
+
for column in OpenEndedPortugueseColumn:
|
88 |
+
auto_eval_column_dict.append([column.name, ColumnContent, ColumnContent(column.value.col_name, "number", True, False, open_ended_portuguese_col=True, invariant=False)])
|
89 |
+
for column in OpenEndedRomanianColumn:
|
90 |
+
auto_eval_column_dict.append([column.name, ColumnContent, ColumnContent(column.value.col_name, "number", True, False, open_ended_romanian_col=True, invariant=False)])
|
91 |
+
for column in OpenEndedGreekColumn:
|
92 |
+
auto_eval_column_dict.append([column.name, ColumnContent, ColumnContent(column.value.col_name, "number", True, False, open_ended_greek_col=True, invariant=False)])
|
93 |
+
for column in ClosedEndedMultilingualColumns:
|
94 |
+
auto_eval_column_dict.append([column.name, ColumnContent, ColumnContent(column.value.col_name, "number", True, False, closed_ended_multilingual_col=True, invariant=False)])
|
95 |
|
96 |
auto_eval_column_dict.append(["is_domain_specific", ColumnContent, ColumnContent("Is Domain Specific", "bool", False)])
|
97 |
auto_eval_column_dict.append(["use_chat_template", ColumnContent, ColumnContent("Uses Chat Template", "bool", False)])
|
|
|
254 |
HEALTHBENCH_HARD_COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden and (c.healthbench_hard_col or c.invariant)]
|
255 |
|
256 |
|
257 |
+
OpenEndedArabic_COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden and (c.open_ended_arabic_col or c.invariant)]
|
258 |
+
OpenEndedFrench_COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden and (c.open_ended_french_col or c.invariant)]
|
259 |
+
OpenEndedSpanish_COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden and (c.open_ended_spanish_col or c.invariant)]
|
260 |
+
OpenEndedPortuguese_COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden and (c.open_ended_portuguese_col or c.invariant)]
|
261 |
+
OpenEndedRomanian_COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden and (c.open_ended_romanian_col or c.invariant)]
|
262 |
+
OpenEndedGreek_COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden and (c.open_ended_greek_col or c.invariant)]
|
263 |
+
|
264 |
+
|
265 |
+
|
266 |
+
ClosedEndedMultilingual_COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden and (c.closed_ended_multilingual_col or c.invariant)]
|
267 |
+
|
268 |
+
|
269 |
+
|
270 |
+
# if PRIVATE_REPO:
|
271 |
+
#CLOSED_ENDED_ARABIC_COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden and (c.closed_ended_arabic_col or c.invariant)]
|
272 |
+
# CROSS_EXAMINATION_COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden and (c.cross_examination_col or c.invariant)]
|
273 |
+
# DATASET_COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden and not c.open_ended_col and not c.med_safety_col and not c.cross_examination_col]
|
274 |
+
# OPEN_ENDED_COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden and not c.dataset_task_col and not c.med_safety_col and not c.cross_examination_col]
|
275 |
+
# MED_SAFETY_COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden and not c.open_ended_col and not c.dataset_task_col and not c.cross_examination_col]
|
276 |
+
# CROSS_EXAMINATION_COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden and not c.open_ended_col and not c.med_safety_col and not c.dataset_task_col]
|
277 |
+
|
278 |
TYPES = [c.type for c in fields(AutoEvalColumn) if not c.hidden]
|
279 |
COLS_LITE = [c.name for c in fields(AutoEvalColumn) if c.displayed_by_default and not c.hidden]
|
280 |
TYPES_LITE = [c.type for c in fields(AutoEvalColumn) if c.displayed_by_default and not c.hidden]
|
|
|
292 |
HEALTHBENCH_BENCHMARK_COLS = [t.value.col_name for t in HealthbenchColumns]
|
293 |
HEALTHBENCH_HARD_BENCHMARK_COLS = [t.value.col_name for t in HealthbenchHardColumns]
|
294 |
|
295 |
+
|
296 |
+
#changed this
|
297 |
+
OpenEndedArabic_BENCHMARK_COLS = [t.value.col_name for t in OpenEndedArabicColumn]
|
298 |
+
OpenEndedFrench_BENCHMARK_COLS = [t.value.col_name for t in OpenEndedFrenchColumn]
|
299 |
+
OpenEndedPortuguese_BENCHMARK_COLS = [t.value.col_name for t in OpenEndedPortugueseColumn]
|
300 |
+
OpenEndedSpanish_BENCHMARK_COLS = [t.value.col_name for t in OpenEndedSpanishColumn]
|
301 |
+
OpenEndedRomanian_BENCHMARK_COLS = [t.value.col_name for t in OpenEndedRomanianColumn]
|
302 |
+
OpenEndedGreek_BENCHMARK_COLS = [t.value.col_name for t in OpenEndedGreekColumn]
|
303 |
+
|
304 |
+
|
305 |
+
ClosedEndedMultilingual_BENCHMARK_COLS = [t.value.col_name for t in ClosedEndedMultilingualColumns]
|
306 |
+
|
307 |
NUMERIC_INTERVALS = {
|
308 |
"?": pd.Interval(-100, 0, closed="right"),
|
309 |
"~1.5": pd.Interval(0, 2, closed="right"),
|
src/leaderboard/instr.txt
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
in about
|
2 |
+
from app, to read evals, to utils to about ( to define the tasks and the colums ( so for close-ended define the languages and for open-ended ( use the same code with 95%CI, Elo rating...)))
|
3 |
+
define a class for open-ended-multilingual ( 6 times for all) the and close-ended mulitlingual globalmmlu
|
4 |
+
6 columns for open-ended and one different for multili
|
5 |
+
|
6 |
+
in utils:
|
7 |
+
|
8 |
+
i should define the columns for languages again ( here we dont care about the hidden parts but we need to define in the beginning )
|
9 |
+
|
10 |
+
in read_evals
|
11 |
+
|
12 |
+
definition of the results of the data frames, and the definition of the int
|
13 |
+
|
14 |
+
for the front end:
|
15 |
+
|
16 |
+
in the app.py,i should add the gr.tabitem for open-ended, follow the healthbench and add the languages same logic as "ALL"
|
src/leaderboard/read_evals.py
CHANGED
@@ -9,7 +9,7 @@ import numpy as np
|
|
9 |
|
10 |
from src.display.formatting import make_clickable_model
|
11 |
# changes to be made here
|
12 |
-
from src.display.utils import AutoEvalColumn, ModelType, ModelArch, Precision, HarnessTasks, WeightType, OpenEndedColumns, MedSafetyColumns, MedicalSummarizationColumns, ACIColumns, SOAPColumns, HealthbenchColumns, HealthbenchHardColumns
|
13 |
from src.submission.check_validity import is_model_on_hub
|
14 |
from src.envs import PRIVATE_REPO
|
15 |
|
@@ -31,6 +31,13 @@ class EvalResult:
|
|
31 |
soap_results: dict
|
32 |
healthbench_results: dict
|
33 |
healthbench_hard_results: dict
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
is_domain_specific: bool
|
35 |
use_chat_template: bool
|
36 |
# clinical_type_results:dict
|
@@ -108,7 +115,7 @@ class EvalResult:
|
|
108 |
open_ended_results = {}
|
109 |
if "open-ended" in data["results"]:
|
110 |
for task in OpenEndedColumns:
|
111 |
-
task = task.value
|
112 |
# We average all scores of a given metric (not all metrics are present in all files)
|
113 |
accs = data["results"]["open-ended"]["overall"][task.benchmark] if task.benchmark in data["results"]["open-ended"]["overall"] else None
|
114 |
open_ended_results[task.benchmark] = accs
|
@@ -196,6 +203,109 @@ class EvalResult:
|
|
196 |
accs = data["results"]["healthbench-hard"]["Theme Scores"][task.benchmark]
|
197 |
healthbench_hard_results[task.benchmark] = accs
|
198 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
199 |
return self(
|
200 |
eval_name=result_key,
|
201 |
full_model=full_model,
|
@@ -210,6 +320,13 @@ class EvalResult:
|
|
210 |
soap_results=soap_results,
|
211 |
healthbench_results=healthbench_results,
|
212 |
healthbench_hard_results=healthbench_hard_results,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
213 |
is_domain_specific=config.get("is_domain_specific", False), # Assuming a default value
|
214 |
use_chat_template=config.get("use_chat_template", False), # Assuming a default value
|
215 |
precision=precision,
|
@@ -322,6 +439,43 @@ class EvalResult:
|
|
322 |
for task in HealthbenchHardColumns:
|
323 |
data_dict[task.value.col_name] = self.healthbench_hard_results[task.value.benchmark]
|
324 |
return data_dict
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
325 |
|
326 |
def get_request_file_for_model(requests_path, model_name, precision):
|
327 |
"""Selects the correct request file for a given model. Only keeps runs tagged as FINISHED"""
|
|
|
9 |
|
10 |
from src.display.formatting import make_clickable_model
|
11 |
# changes to be made here
|
12 |
+
from src.display.utils import AutoEvalColumn, ModelType, ModelArch, Precision, HarnessTasks, WeightType, OpenEndedColumns, MedSafetyColumns, MedicalSummarizationColumns, ACIColumns, SOAPColumns, HealthbenchColumns, HealthbenchHardColumns, ClosedEndedMultilingualColumns, OpenEndedArabicColumn, OpenEndedFrenchColumn, OpenEndedSpanishColumn, OpenEndedPortugueseColumn, OpenEndedRomanianColumn, OpenEndedGreekColumn
|
13 |
from src.submission.check_validity import is_model_on_hub
|
14 |
from src.envs import PRIVATE_REPO
|
15 |
|
|
|
31 |
soap_results: dict
|
32 |
healthbench_results: dict
|
33 |
healthbench_hard_results: dict
|
34 |
+
open_ended_arabic_results: dict
|
35 |
+
open_ended_french_results: dict
|
36 |
+
open_ended_spanish_results: dict
|
37 |
+
open_ended_portuguese_results: dict
|
38 |
+
open_ended_romanian_results: dict
|
39 |
+
open_ended_greek_results: dict
|
40 |
+
closed_ended_multilingual_results: dict
|
41 |
is_domain_specific: bool
|
42 |
use_chat_template: bool
|
43 |
# clinical_type_results:dict
|
|
|
115 |
open_ended_results = {}
|
116 |
if "open-ended" in data["results"]:
|
117 |
for task in OpenEndedColumns:
|
118 |
+
task = task.value
|
119 |
# We average all scores of a given metric (not all metrics are present in all files)
|
120 |
accs = data["results"]["open-ended"]["overall"][task.benchmark] if task.benchmark in data["results"]["open-ended"]["overall"] else None
|
121 |
open_ended_results[task.benchmark] = accs
|
|
|
203 |
accs = data["results"]["healthbench-hard"]["Theme Scores"][task.benchmark]
|
204 |
healthbench_hard_results[task.benchmark] = accs
|
205 |
|
206 |
+
open_ended_arabic_results = {}
|
207 |
+
if "open-ended-arabic" in data["results"]:
|
208 |
+
for task in OpenEndedArabicColumn:
|
209 |
+
task = task.value
|
210 |
+
# We average all scores of a given metric (not all metrics are present in all files)
|
211 |
+
accs = data["results"]["open-ended-arabic"]["overall"][task.benchmark] if task.benchmark in data["results"]["open-ended-arabic"]["overall"] else None
|
212 |
+
open_ended_arabic_results[task.benchmark] = accs
|
213 |
+
if open_ended_arabic_results["ELO_intervals"] is not None and open_ended_arabic_results["Score_intervals"] is not None:
|
214 |
+
open_ended_arabic_results["ELO_intervals"] = "+" + str(open_ended_arabic_results["ELO_intervals"][1]) + "/-" + str(abs(float(open_ended_arabic_results["ELO_intervals"][0])))
|
215 |
+
open_ended_arabic_results["Score_intervals"] = "+" + str(open_ended_arabic_results["Score_intervals"][1]) + "/-" + str(abs(float(open_ended_arabic_results["Score_intervals"][0])))
|
216 |
+
open_ended_french_results = {}
|
217 |
+
if "open-ended-french" in data["results"]:
|
218 |
+
for task in OpenEndedFrenchColumn:
|
219 |
+
task = task.value
|
220 |
+
# We average all scores of a given metric (not all metrics are present in all files)
|
221 |
+
accs = data["results"]["open-ended-french"]["overall"][task.benchmark] if task.benchmark in data["results"]["open-ended-french"]["overall"] else None
|
222 |
+
open_ended_french_results[task.benchmark] = accs
|
223 |
+
if open_ended_french_results["ELO_intervals"] is not None and open_ended_french_results["Score_intervals"] is not None:
|
224 |
+
open_ended_french_results["ELO_intervals"] = "+" + str(open_ended_french_results["ELO_intervals"][1]) + "/-" + str(abs(open_ended_french_results["ELO_intervals"][0]))
|
225 |
+
open_ended_french_results["Score_intervals"] = "+" + str(open_ended_french_results["Score_intervals"][1]) + "/-" + str(abs(open_ended_french_results["Score_intervals"][0]))
|
226 |
+
open_ended_spanish_results = {}
|
227 |
+
if "open-ended-spanish" in data["results"]:
|
228 |
+
for task in OpenEndedSpanishColumn:
|
229 |
+
task = task.value
|
230 |
+
# We average all scores of a given metric (not all metrics are present in all files)
|
231 |
+
accs = data["results"]["open-ended-spanish"]["overall"][task.benchmark] if task.benchmark in data["results"]["open-ended-spanish"]["overall"] else None
|
232 |
+
open_ended_spanish_results[task.benchmark] = accs
|
233 |
+
if open_ended_spanish_results["ELO_intervals"] is not None and open_ended_spanish_results["Score_intervals"] is not None:
|
234 |
+
open_ended_spanish_results["ELO_intervals"] = "+" + str(open_ended_spanish_results["ELO_intervals"][1]) + "/-" + str(abs(open_ended_spanish_results["ELO_intervals"][0]))
|
235 |
+
open_ended_spanish_results["Score_intervals"] = "+" + str(open_ended_spanish_results["Score_intervals"][1]) + "/-" + str(abs(open_ended_spanish_results["Score_intervals"][0]))
|
236 |
+
open_ended_portuguese_results = {}
|
237 |
+
if "open-ended-portuguese" in data["results"]:
|
238 |
+
for task in OpenEndedPortugueseColumn:
|
239 |
+
task = task.value
|
240 |
+
# We average all scores of a given metric (not all metrics are present in all files)
|
241 |
+
accs = data["results"]["open-ended-portuguese"]["overall"][task.benchmark] if task.benchmark in data["results"]["open-ended-portuguese"]["overall"] else None
|
242 |
+
open_ended_portuguese_results[task.benchmark] = accs
|
243 |
+
if open_ended_portuguese_results["ELO_intervals"] is not None and open_ended_portuguese_results["Score_intervals"] is not None:
|
244 |
+
open_ended_portuguese_results["ELO_intervals"] = "+" + str(open_ended_portuguese_results["ELO_intervals"][1]) + "/-" + str(abs(open_ended_portuguese_results["ELO_intervals"][0]))
|
245 |
+
open_ended_portuguese_results["Score_intervals"] = "+" + str(open_ended_portuguese_results["Score_intervals"][1]) + "/-" + str(abs(open_ended_portuguese_results["Score_intervals"][0]))
|
246 |
+
open_ended_romanian_results = {}
|
247 |
+
if "open-ended-romanian" in data["results"]:
|
248 |
+
for task in OpenEndedRomanianColumn:
|
249 |
+
task = task.value
|
250 |
+
# We average all scores of a given metric (not all metrics are present in all files)
|
251 |
+
accs = data["results"]["open-ended-romanian"]["overall"][task.benchmark] if task.benchmark in data["results"]["open-ended-romanian"]["overall"] else None
|
252 |
+
open_ended_romanian_results[task.benchmark] = accs
|
253 |
+
if open_ended_romanian_results["ELO_intervals"] is not None and open_ended_romanian_results["Score_intervals"] is not None:
|
254 |
+
open_ended_romanian_results["ELO_intervals"] = "+" + str(open_ended_romanian_results["ELO_intervals"][1]) + "/-" + str(abs(open_ended_romanian_results["ELO_intervals"][0]))
|
255 |
+
open_ended_romanian_results["Score_intervals"] = "+" + str(open_ended_romanian_results["Score_intervals"][1]) + "/-" + str(abs(open_ended_romanian_results["Score_intervals"][0]))
|
256 |
+
open_ended_greek_results = {}
|
257 |
+
if "open-ended-greek" in data["results"]:
|
258 |
+
for task in OpenEndedGreekColumn:
|
259 |
+
task = task.value
|
260 |
+
# We average all scores of a given metric (not all metrics are present in all files)
|
261 |
+
accs = data["results"]["open-ended-greek"]["overall"][task.benchmark] if task.benchmark in data["results"]["open-ended-greek"]["overall"] else None
|
262 |
+
open_ended_greek_results[task.benchmark] = accs
|
263 |
+
if open_ended_greek_results["ELO_intervals"] is not None and open_ended_greek_results["Score_intervals"] is not None:
|
264 |
+
open_ended_greek_results["ELO_intervals"] = "+" + str(open_ended_greek_results["ELO_intervals"][1]) + "/-" + str(abs(float(open_ended_greek_results["ELO_intervals"][0])))
|
265 |
+
open_ended_greek_results["Score_intervals"] = "+" + str(open_ended_greek_results["Score_intervals"][1]) + "/-" + str(abs(float(open_ended_greek_results["Score_intervals"][0])))
|
266 |
+
closed_ended_multilingual_results = {}
|
267 |
+
if "closed-ended-multilingual" in data["results"]:
|
268 |
+
for task in ClosedEndedMultilingualColumns:
|
269 |
+
task = task.value
|
270 |
+
accs = data["results"]["closed-ended-multilingual"][task.benchmark]["accuracy"] if task.benchmark in data["results"]["closed-ended-multilingual"] else None
|
271 |
+
closed_ended_multilingual_results[task.benchmark] = accs
|
272 |
+
|
273 |
+
# #add the
|
274 |
+
# closed_ended_arabic_results = {}
|
275 |
+
# if PRIVATE_REPO and "closed-ended-arabic" in data["results"]:
|
276 |
+
# for task in ClosedEndedArabicColumns:
|
277 |
+
# task = task.value
|
278 |
+
# # We average all scores of a given metric (not all metrics are present in all files)
|
279 |
+
# try:
|
280 |
+
# accs = np.array([v.get(task.metric, None) for k, v in data["results"]["closed-ended-arabic"].items() if task.benchmark == k])
|
281 |
+
# except:
|
282 |
+
# # breakpoint()
|
283 |
+
# accs = np.array([])
|
284 |
+
# if accs.size == 0 or any([acc is None for acc in accs]):
|
285 |
+
# continue
|
286 |
+
# mean_acc = np.mean(accs) # * 100.0
|
287 |
+
# closed_ended_arabic_results[task.benchmark] = mean_acc
|
288 |
+
|
289 |
+
|
290 |
+
# if open_ended_results == {} or med_safety_results == {} or medical_summarization_results == {} or aci_results == {} or soap_results == {}:
|
291 |
+
# open_ended_results = {}
|
292 |
+
# med_safety_results = {}
|
293 |
+
# medical_summarization_results = {}
|
294 |
+
# aci_results = {}
|
295 |
+
# soap_results = {}
|
296 |
+
# types_results = {}
|
297 |
+
# for clinical_type in ClinicalTypes:
|
298 |
+
# clinical_type = clinical_type.value
|
299 |
+
|
300 |
+
# # We average all scores of a given metric (not all metrics are present in all files)
|
301 |
+
# accs = np.array([v.get(clinical_type.metric, None) for k, v in data[evaluation_metric]["clinical_type_results"].items() if clinical_type.benchmark == k])
|
302 |
+
# if accs.size == 0 or any([acc is None for acc in accs]):
|
303 |
+
# continue
|
304 |
+
|
305 |
+
# mean_acc = np.mean(accs) # * 100.0
|
306 |
+
# types_results[clinical_type.benchmark] = mean_acc
|
307 |
+
# if "deepseek-ai/DeepSeek-R1-Distill-Llama-70B" in json_filepath:
|
308 |
+
# breakpoint()
|
309 |
return self(
|
310 |
eval_name=result_key,
|
311 |
full_model=full_model,
|
|
|
320 |
soap_results=soap_results,
|
321 |
healthbench_results=healthbench_results,
|
322 |
healthbench_hard_results=healthbench_hard_results,
|
323 |
+
open_ended_arabic_results=open_ended_arabic_results,
|
324 |
+
open_ended_french_results=open_ended_french_results,
|
325 |
+
open_ended_spanish_results=open_ended_spanish_results,
|
326 |
+
open_ended_portuguese_results=open_ended_portuguese_results,
|
327 |
+
open_ended_romanian_results=open_ended_romanian_results,
|
328 |
+
open_ended_greek_results=open_ended_greek_results,
|
329 |
+
closed_ended_multilingual_results=closed_ended_multilingual_results,
|
330 |
is_domain_specific=config.get("is_domain_specific", False), # Assuming a default value
|
331 |
use_chat_template=config.get("use_chat_template", False), # Assuming a default value
|
332 |
precision=precision,
|
|
|
439 |
for task in HealthbenchHardColumns:
|
440 |
data_dict[task.value.col_name] = self.healthbench_hard_results[task.value.benchmark]
|
441 |
return data_dict
|
442 |
+
if subset == "open_ended_arabic":
|
443 |
+
if len(self.open_ended_arabic_results) > 0:
|
444 |
+
for task in OpenEndedArabicColumn:
|
445 |
+
data_dict[task.value.col_name] = self.open_ended_arabic_results[task.value.benchmark]
|
446 |
+
return data_dict
|
447 |
+
if subset == "open_ended_french":
|
448 |
+
if len(self.open_ended_french_results) > 0:
|
449 |
+
for task in OpenEndedFrenchColumn:
|
450 |
+
data_dict[task.value.col_name] = self.open_ended_french_results[task.value.benchmark]
|
451 |
+
return data_dict
|
452 |
+
if subset == "open_ended_spanish":
|
453 |
+
if len(self.open_ended_spanish_results) > 0:
|
454 |
+
for task in OpenEndedSpanishColumn:
|
455 |
+
data_dict[task.value.col_name] = self.open_ended_spanish_results[task.value.benchmark]
|
456 |
+
return data_dict
|
457 |
+
if subset == "open_ended_portuguese":
|
458 |
+
if len(self.open_ended_portuguese_results) > 0:
|
459 |
+
for task in OpenEndedPortugueseColumn:
|
460 |
+
data_dict[task.value.col_name] = self.open_ended_portuguese_results[task.value.benchmark]
|
461 |
+
return data_dict
|
462 |
+
if subset == "open_ended_romanian":
|
463 |
+
if len(self.open_ended_romanian_results) > 0:
|
464 |
+
for task in OpenEndedRomanianColumn:
|
465 |
+
data_dict[task.value.col_name] = self.open_ended_romanian_results[task.value.benchmark]
|
466 |
+
return data_dict
|
467 |
+
if subset == "open_ended_greek":
|
468 |
+
if len(self.open_ended_greek_results) > 0:
|
469 |
+
for task in OpenEndedGreekColumn:
|
470 |
+
data_dict[task.value.col_name] = self.open_ended_greek_results[task.value.benchmark]
|
471 |
+
return data_dict
|
472 |
+
if subset == "closed_ended_multilingual":
|
473 |
+
average = sum([v for v in self.closed_ended_multilingual_results.values() if v is not None]) / len(ClosedEndedMultilingualColumns)
|
474 |
+
data_dict[AutoEvalColumn.average.name] = average
|
475 |
+
if len(self.closed_ended_multilingual_results) > 0:
|
476 |
+
for task in ClosedEndedMultilingualColumns:
|
477 |
+
data_dict[task.value.col_name] = self.closed_ended_multilingual_results[task.value.benchmark]
|
478 |
+
return data_dict
|
479 |
|
480 |
def get_request_file_for_model(requests_path, model_name, precision):
|
481 |
"""Selects the correct request file for a given model. Only keeps runs tagged as FINISHED"""
|
src/populate.py
CHANGED
@@ -5,7 +5,7 @@ import pandas as pd
|
|
5 |
|
6 |
from src.display.formatting import has_no_nan_values, make_clickable_model
|
7 |
# changes to be made here
|
8 |
-
from src.display.utils import AutoEvalColumn, EvalQueueColumn, OpenEndedColumns, MedSafetyColumns, MedicalSummarizationColumns, ACIColumns, SOAPColumns, HealthbenchColumns, HealthbenchHardColumns
|
9 |
from src.leaderboard.read_evals import get_raw_eval_results
|
10 |
from src.envs import PRIVATE_REPO
|
11 |
|
@@ -14,15 +14,16 @@ def get_leaderboard_df(results_path: str, requests_path: str, cols: list, benchm
|
|
14 |
raw_data = get_raw_eval_results(results_path, requests_path, evaluation_metric)
|
15 |
# print(raw_data)
|
16 |
# raise Exception("stop")
|
|
|
|
|
17 |
all_data_json = [v.to_dict(subset=subset) for v in raw_data]
|
18 |
-
|
19 |
df = pd.DataFrame.from_records(all_data_json)
|
20 |
# changes to be made here
|
21 |
if subset == "datasets":
|
22 |
df = df.sort_values(by=[AutoEvalColumn.average.name], ascending=False)
|
23 |
elif subset == "med_safety":
|
24 |
df = df.sort_values(by=["Harmfulness Score"], ascending=True)
|
25 |
-
elif subset
|
26 |
df = df.sort_values(by=["ELO"], ascending=False)
|
27 |
elif subset == "medical_summarization":
|
28 |
df = df.sort_values(by=[AutoEvalColumn.overall.name], ascending=False)
|
@@ -36,6 +37,8 @@ def get_leaderboard_df(results_path: str, requests_path: str, cols: list, benchm
|
|
36 |
df = df.sort_values(by=["Overall Score"], ascending=False)
|
37 |
elif subset == "healthbench_hard":
|
38 |
df = df.sort_values(by=["Overall Score"], ascending=False)
|
|
|
|
|
39 |
cols = list(set(df.columns).intersection(set(cols)))
|
40 |
df = df[cols].round(decimals=2)
|
41 |
# filter out if any of the benchmarks have not been produced
|
|
|
5 |
|
6 |
from src.display.formatting import has_no_nan_values, make_clickable_model
|
7 |
# changes to be made here
|
8 |
+
from src.display.utils import AutoEvalColumn, EvalQueueColumn, OpenEndedColumns, MedSafetyColumns, MedicalSummarizationColumns, ACIColumns, SOAPColumns, HealthbenchColumns, HealthbenchHardColumns, OpenEndedArabicColumn, OpenEndedFrenchColumn, OpenEndedSpanishColumn, OpenEndedPortugueseColumn, OpenEndedRomanianColumn, OpenEndedGreekColumn, ClosedEndedMultilingualColumns
|
9 |
from src.leaderboard.read_evals import get_raw_eval_results
|
10 |
from src.envs import PRIVATE_REPO
|
11 |
|
|
|
14 |
raw_data = get_raw_eval_results(results_path, requests_path, evaluation_metric)
|
15 |
# print(raw_data)
|
16 |
# raise Exception("stop")
|
17 |
+
# if subset.startswith("healthbench"):
|
18 |
+
# breakpoint()
|
19 |
all_data_json = [v.to_dict(subset=subset) for v in raw_data]
|
|
|
20 |
df = pd.DataFrame.from_records(all_data_json)
|
21 |
# changes to be made here
|
22 |
if subset == "datasets":
|
23 |
df = df.sort_values(by=[AutoEvalColumn.average.name], ascending=False)
|
24 |
elif subset == "med_safety":
|
25 |
df = df.sort_values(by=["Harmfulness Score"], ascending=True)
|
26 |
+
elif subset.startswith("open_ended"):
|
27 |
df = df.sort_values(by=["ELO"], ascending=False)
|
28 |
elif subset == "medical_summarization":
|
29 |
df = df.sort_values(by=[AutoEvalColumn.overall.name], ascending=False)
|
|
|
37 |
df = df.sort_values(by=["Overall Score"], ascending=False)
|
38 |
elif subset == "healthbench_hard":
|
39 |
df = df.sort_values(by=["Overall Score"], ascending=False)
|
40 |
+
elif subset == "closed_ended_multilingual":
|
41 |
+
df = df.sort_values(by=[AutoEvalColumn.average.name], ascending=False)
|
42 |
cols = list(set(df.columns).intersection(set(cols)))
|
43 |
df = df[cols].round(decimals=2)
|
44 |
# filter out if any of the benchmarks have not been produced
|
src/submission/check_validity.py
CHANGED
@@ -49,7 +49,7 @@ def is_model_on_hub(model_name: str, revision: str, token: str = None, trust_rem
|
|
49 |
return True, None, config
|
50 |
|
51 |
except ValueError as e:
|
52 |
-
print(e)
|
53 |
return (
|
54 |
False,
|
55 |
"needs to be launched with `trust_remote_code=True`. For safety reason, we do not allow these models to be automatically submitted to the leaderboard.",
|
@@ -57,7 +57,7 @@ def is_model_on_hub(model_name: str, revision: str, token: str = None, trust_rem
|
|
57 |
)
|
58 |
|
59 |
except Exception as e:
|
60 |
-
print(e)
|
61 |
return False, "was not found on hub!", None
|
62 |
|
63 |
def get_model_size(model_info: ModelInfo, precision: str=None):
|
|
|
49 |
return True, None, config
|
50 |
|
51 |
except ValueError as e:
|
52 |
+
# print(e)
|
53 |
return (
|
54 |
False,
|
55 |
"needs to be launched with `trust_remote_code=True`. For safety reason, we do not allow these models to be automatically submitted to the leaderboard.",
|
|
|
57 |
)
|
58 |
|
59 |
except Exception as e:
|
60 |
+
# print(e)
|
61 |
return False, "was not found on hub!", None
|
62 |
|
63 |
def get_model_size(model_info: ModelInfo, precision: str=None):
|