Spaces:
Running
on
Zero
Running
on
Zero
Ink
commited on
Fix realtime entropy patching (#26)
Browse files* allow loading of the entropy model directly
* remove unused argument
* remove spammy warning
* allow patch_batch_size to be adjusted in the forward() method
* revert to original patcher style, fix warning
* allow grads when calculating entropies
* fix grad flow
* return preds from calculate_entropies()
* remove legacy arg
* fix an error with monotonicity and small sequence lengths
* ensure patcher is serializable
* revert patcher to original
* remove unused import
bytelatent/data/patcher.py
CHANGED
|
@@ -2,6 +2,7 @@
|
|
| 2 |
import math
|
| 3 |
import time
|
| 4 |
from collections import defaultdict
|
|
|
|
| 5 |
from enum import Enum
|
| 6 |
|
| 7 |
import torch
|
|
@@ -58,7 +59,11 @@ def entropy(scores):
|
|
| 58 |
|
| 59 |
|
| 60 |
def calculate_entropies(
|
| 61 |
-
tokens: torch.tensor,
|
|
|
|
|
|
|
|
|
|
|
|
|
| 62 |
):
|
| 63 |
"""
|
| 64 |
tokens: 2D tensor of shape [batch_size, seq_len]
|
|
@@ -67,8 +72,12 @@ def calculate_entropies(
|
|
| 67 |
Splits the tokens into chunks of size max_length and calculates entropies for each chunk.
|
| 68 |
Entropy model can be executed on cpu or gpu, specify either 'cuda' or 'cpu' in the device argument.
|
| 69 |
"""
|
| 70 |
-
|
|
|
|
|
|
|
|
|
|
| 71 |
entropies = []
|
|
|
|
| 72 |
max_length = getattr(entropy_model, "max_length", 8192)
|
| 73 |
batch_numel = max_length * patching_batch_size
|
| 74 |
splits = torch.split(tokens.flatten(), batch_numel)
|
|
@@ -86,12 +95,15 @@ def calculate_entropies(
|
|
| 86 |
pred = pred.reshape(-1, pred.shape[-1])[
|
| 87 |
: split.numel() - pad_size, :
|
| 88 |
] # [batch_size * seq_len, vocab]
|
|
|
|
| 89 |
pred_entropies = entropy(pred)
|
| 90 |
entropies.append(pred_entropies)
|
| 91 |
|
| 92 |
concat_entropies = torch.cat(entropies, dim=0)
|
| 93 |
concat_entropies = concat_entropies.reshape(tokens.shape)
|
| 94 |
-
|
|
|
|
|
|
|
| 95 |
|
| 96 |
|
| 97 |
def patch_start_mask_from_entropy_with_monotonicity(entropies, t):
|
|
@@ -101,6 +113,10 @@ def patch_start_mask_from_entropy_with_monotonicity(entropies, t):
|
|
| 101 |
returns [bs, seq_len] mask where True indicates the start of a patch
|
| 102 |
"""
|
| 103 |
bs, seq_len = entropies.shape
|
|
|
|
|
|
|
|
|
|
|
|
|
| 104 |
mask = torch.zeros_like(entropies, dtype=torch.bool)
|
| 105 |
mask[:, 0] = True
|
| 106 |
|
|
@@ -123,6 +139,10 @@ def patch_start_mask_global_and_monotonicity(entropies, t, t_add=0):
|
|
| 123 |
returns [bs, seq_len] mask where True indicates the start of a patch
|
| 124 |
"""
|
| 125 |
bs, seq_len = entropies.shape
|
|
|
|
|
|
|
|
|
|
|
|
|
| 126 |
mask = torch.zeros_like(entropies, dtype=torch.bool)
|
| 127 |
mask[:, 0] = True
|
| 128 |
|
|
@@ -521,12 +541,12 @@ class Patcher:
|
|
| 521 |
if self.log_time:
|
| 522 |
s = time.time()
|
| 523 |
if entropies is not None:
|
| 524 |
-
scores =
|
| 525 |
elif preds is not None:
|
| 526 |
scores = entropy(preds)
|
| 527 |
else:
|
| 528 |
start_entropies = time.time()
|
| 529 |
-
scores = calculate_entropies(
|
| 530 |
tokens,
|
| 531 |
self.entropy_model,
|
| 532 |
self.patching_batch_size,
|
|
|
|
| 2 |
import math
|
| 3 |
import time
|
| 4 |
from collections import defaultdict
|
| 5 |
+
from contextlib import nullcontext
|
| 6 |
from enum import Enum
|
| 7 |
|
| 8 |
import torch
|
|
|
|
| 59 |
|
| 60 |
|
| 61 |
def calculate_entropies(
|
| 62 |
+
tokens: torch.tensor,
|
| 63 |
+
entropy_model,
|
| 64 |
+
patching_batch_size,
|
| 65 |
+
device: str | None = None,
|
| 66 |
+
enable_grad: bool = False,
|
| 67 |
):
|
| 68 |
"""
|
| 69 |
tokens: 2D tensor of shape [batch_size, seq_len]
|
|
|
|
| 72 |
Splits the tokens into chunks of size max_length and calculates entropies for each chunk.
|
| 73 |
Entropy model can be executed on cpu or gpu, specify either 'cuda' or 'cpu' in the device argument.
|
| 74 |
"""
|
| 75 |
+
|
| 76 |
+
grad_context = nullcontext() if enable_grad else torch.no_grad()
|
| 77 |
+
|
| 78 |
+
with grad_context:
|
| 79 |
entropies = []
|
| 80 |
+
preds = []
|
| 81 |
max_length = getattr(entropy_model, "max_length", 8192)
|
| 82 |
batch_numel = max_length * patching_batch_size
|
| 83 |
splits = torch.split(tokens.flatten(), batch_numel)
|
|
|
|
| 95 |
pred = pred.reshape(-1, pred.shape[-1])[
|
| 96 |
: split.numel() - pad_size, :
|
| 97 |
] # [batch_size * seq_len, vocab]
|
| 98 |
+
preds.append(pred)
|
| 99 |
pred_entropies = entropy(pred)
|
| 100 |
entropies.append(pred_entropies)
|
| 101 |
|
| 102 |
concat_entropies = torch.cat(entropies, dim=0)
|
| 103 |
concat_entropies = concat_entropies.reshape(tokens.shape)
|
| 104 |
+
concat_preds = torch.cat(preds, dim=0)
|
| 105 |
+
concat_preds = concat_preds.reshape(tokens.shape[0], tokens.shape[1], -1)
|
| 106 |
+
return concat_entropies, concat_preds
|
| 107 |
|
| 108 |
|
| 109 |
def patch_start_mask_from_entropy_with_monotonicity(entropies, t):
|
|
|
|
| 113 |
returns [bs, seq_len] mask where True indicates the start of a patch
|
| 114 |
"""
|
| 115 |
bs, seq_len = entropies.shape
|
| 116 |
+
|
| 117 |
+
if seq_len == 0:
|
| 118 |
+
return entropies > t
|
| 119 |
+
|
| 120 |
mask = torch.zeros_like(entropies, dtype=torch.bool)
|
| 121 |
mask[:, 0] = True
|
| 122 |
|
|
|
|
| 139 |
returns [bs, seq_len] mask where True indicates the start of a patch
|
| 140 |
"""
|
| 141 |
bs, seq_len = entropies.shape
|
| 142 |
+
|
| 143 |
+
if seq_len == 0:
|
| 144 |
+
return entropies > t
|
| 145 |
+
|
| 146 |
mask = torch.zeros_like(entropies, dtype=torch.bool)
|
| 147 |
mask[:, 0] = True
|
| 148 |
|
|
|
|
| 541 |
if self.log_time:
|
| 542 |
s = time.time()
|
| 543 |
if entropies is not None:
|
| 544 |
+
scores = entropies.to(dtype=torch.float32)
|
| 545 |
elif preds is not None:
|
| 546 |
scores = entropy(preds)
|
| 547 |
else:
|
| 548 |
start_entropies = time.time()
|
| 549 |
+
scores, _ = calculate_entropies(
|
| 550 |
tokens,
|
| 551 |
self.entropy_model,
|
| 552 |
self.patching_batch_size,
|
bytelatent/model/local_models.py
CHANGED
|
@@ -199,9 +199,6 @@ class LocalModelBase(nn.Module):
|
|
| 199 |
class LocalEncoder(LocalModelBase):
|
| 200 |
def __init__(self, args: LocalModelArgs):
|
| 201 |
super().__init__(args)
|
| 202 |
-
self.output_proj = (
|
| 203 |
-
args.patching_mode in ["entropy", "probmax"]
|
| 204 |
-
) and args.entropy_model_checkpoint_dir is None
|
| 205 |
|
| 206 |
self.apply_transformer = args.use_local_encoder_transformer
|
| 207 |
self.downsampling_by_pooling = args.downsampling_by_pooling
|
|
|
|
| 199 |
class LocalEncoder(LocalModelBase):
|
| 200 |
def __init__(self, args: LocalModelArgs):
|
| 201 |
super().__init__(args)
|
|
|
|
|
|
|
|
|
|
| 202 |
|
| 203 |
self.apply_transformer = args.use_local_encoder_transformer
|
| 204 |
self.downsampling_by_pooling = args.downsampling_by_pooling
|
bytelatent/model/utils.py
CHANGED
|
@@ -162,9 +162,6 @@ def create_causal_mask(
|
|
| 162 |
return "causal"
|
| 163 |
|
| 164 |
if BLT_SUPPRESS_ATTN_ERROR == 1:
|
| 165 |
-
logging.warning(
|
| 166 |
-
"SDPA attention being used, which doesn't have specialized attention implementations for block_causal and local_block_causal attention. Allowing model to run since BLT_SUPPRESS_ATTN_ERROR=1"
|
| 167 |
-
)
|
| 168 |
return "causal"
|
| 169 |
else:
|
| 170 |
raise ValueError(
|
|
|
|
| 162 |
return "causal"
|
| 163 |
|
| 164 |
if BLT_SUPPRESS_ATTN_ERROR == 1:
|
|
|
|
|
|
|
|
|
|
| 165 |
return "causal"
|
| 166 |
else:
|
| 167 |
raise ValueError(
|
bytelatent/preprocess/preprocess_entropies.py
CHANGED
|
@@ -117,7 +117,7 @@ def main(
|
|
| 117 |
text = get_text(doc)
|
| 118 |
tokens = torch.tensor(tokenizer.encode(text))
|
| 119 |
patch_start = time.time()
|
| 120 |
-
scores = calculate_entropies(
|
| 121 |
tokens,
|
| 122 |
entropy_model,
|
| 123 |
patching_batch_size,
|
|
|
|
| 117 |
text = get_text(doc)
|
| 118 |
tokens = torch.tensor(tokenizer.encode(text))
|
| 119 |
patch_start = time.time()
|
| 120 |
+
scores, _ = calculate_entropies(
|
| 121 |
tokens,
|
| 122 |
entropy_model,
|
| 123 |
patching_batch_size,
|