Prasanna
commited on
Commit
·
1e51aa0
1
Parent(s):
2d72593
Add app files
Browse files- app.py +66 -0
- requirements.txt +6 -2
- src/streamlit_app.py +0 -40
app.py
ADDED
@@ -0,0 +1,66 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import pandas as pd
|
3 |
+
import tensorflow as tf
|
4 |
+
from tensorflow.keras.models import load_model
|
5 |
+
from PIL import Image
|
6 |
+
import numpy as np
|
7 |
+
|
8 |
+
from huggingface_hub import hf_hub_download
|
9 |
+
|
10 |
+
st.title("lung cancer detection")
|
11 |
+
st.write("Upload an image of a lung X-ray to detect lung cancer.")
|
12 |
+
|
13 |
+
# Download model from Hugging Face model hub
|
14 |
+
model_path = hf_hub_download(
|
15 |
+
repo_id="your-username/lung_cancer_model", # 👈 replace with your actual username and repo
|
16 |
+
filename="lung_cancer_model.keras"
|
17 |
+
)
|
18 |
+
|
19 |
+
model = tf.keras.models.load_model(model_path)
|
20 |
+
#model = load_model('lung_cancer_model.keras')
|
21 |
+
#for uploading a image
|
22 |
+
|
23 |
+
img = st.file_uploader("Choose a image file", type=["jpg", "jpeg", "png","webp"])
|
24 |
+
# Check if an image file is uploaded
|
25 |
+
if img is not None and img.name.endswith(('jpg', 'jpeg', 'png','webp')):
|
26 |
+
# Display the image
|
27 |
+
image = Image.open(img)
|
28 |
+
st.image(image, caption='Uploaded Image', use_container_width=True)
|
29 |
+
# --- Image preprocessing steps ---
|
30 |
+
image = image.resize((256, 256)) # replace with your model’s input size
|
31 |
+
image_array = np.array(image)
|
32 |
+
|
33 |
+
#🎯 Optional: Auto-detect input size
|
34 |
+
#You can dynamically get the expected input shape like this:
|
35 |
+
#input_size = model.input_shape[1:3] # (height, width)
|
36 |
+
#Image = image.resize(input_size)
|
37 |
+
|
38 |
+
|
39 |
+
if image_array.shape[-1] == 4: # RGBA to RGB
|
40 |
+
image_array = image_array[:, :, :3]
|
41 |
+
|
42 |
+
image_array = image_array / 255.0 # normalize if model was trained on normalized images
|
43 |
+
image_array = np.expand_dims(image_array, axis=0) # add batch dimension
|
44 |
+
class_name_map = {
|
45 |
+
"lung_acc": "Adenocarcinoma (Cancerous)",
|
46 |
+
"lung_n": "Normal (Non-Cancerous)",
|
47 |
+
"lung_scc": "Squamous Carcinoma (Cancerous)"
|
48 |
+
}
|
49 |
+
# List must match order in which the model was trained
|
50 |
+
original_class_names = ["lung_acc", "lung_n", "lung_scc"]
|
51 |
+
|
52 |
+
# Make prediction
|
53 |
+
prediction = model.predict(image_array)
|
54 |
+
predicted_class = np.argmax(prediction)
|
55 |
+
predicted_key = original_class_names[predicted_class]
|
56 |
+
predicted_label = class_name_map[predicted_key]
|
57 |
+
|
58 |
+
# Show result
|
59 |
+
st.success(f"Prediction: {predicted_label} (Confidence: {prediction[0][predicted_class]:.2f})")
|
60 |
+
|
61 |
+
|
62 |
+
|
63 |
+
|
64 |
+
|
65 |
+
|
66 |
+
|
requirements.txt
CHANGED
@@ -1,3 +1,7 @@
|
|
1 |
-
|
|
|
2 |
pandas
|
3 |
-
|
|
|
|
|
|
|
|
1 |
+
numpy
|
2 |
+
tensorflow
|
3 |
pandas
|
4 |
+
scikit-learn
|
5 |
+
Image
|
6 |
+
streamlit
|
7 |
+
huggingface_hub
|
src/streamlit_app.py
DELETED
@@ -1,40 +0,0 @@
|
|
1 |
-
import altair as alt
|
2 |
-
import numpy as np
|
3 |
-
import pandas as pd
|
4 |
-
import streamlit as st
|
5 |
-
|
6 |
-
"""
|
7 |
-
# Welcome to Streamlit!
|
8 |
-
|
9 |
-
Edit `/streamlit_app.py` to customize this app to your heart's desire :heart:.
|
10 |
-
If you have any questions, checkout our [documentation](https://docs.streamlit.io) and [community
|
11 |
-
forums](https://discuss.streamlit.io).
|
12 |
-
|
13 |
-
In the meantime, below is an example of what you can do with just a few lines of code:
|
14 |
-
"""
|
15 |
-
|
16 |
-
num_points = st.slider("Number of points in spiral", 1, 10000, 1100)
|
17 |
-
num_turns = st.slider("Number of turns in spiral", 1, 300, 31)
|
18 |
-
|
19 |
-
indices = np.linspace(0, 1, num_points)
|
20 |
-
theta = 2 * np.pi * num_turns * indices
|
21 |
-
radius = indices
|
22 |
-
|
23 |
-
x = radius * np.cos(theta)
|
24 |
-
y = radius * np.sin(theta)
|
25 |
-
|
26 |
-
df = pd.DataFrame({
|
27 |
-
"x": x,
|
28 |
-
"y": y,
|
29 |
-
"idx": indices,
|
30 |
-
"rand": np.random.randn(num_points),
|
31 |
-
})
|
32 |
-
|
33 |
-
st.altair_chart(alt.Chart(df, height=700, width=700)
|
34 |
-
.mark_point(filled=True)
|
35 |
-
.encode(
|
36 |
-
x=alt.X("x", axis=None),
|
37 |
-
y=alt.Y("y", axis=None),
|
38 |
-
color=alt.Color("idx", legend=None, scale=alt.Scale()),
|
39 |
-
size=alt.Size("rand", legend=None, scale=alt.Scale(range=[1, 150])),
|
40 |
-
))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|