Spaces:
Running
Running
File size: 19,206 Bytes
6ebb0fb bce84cc 3856741 6ebb0fb 7bc8d30 bce84cc 3856741 f589e51 6ebb0fb 6369a6a 6ebb0fb 5a80058 9caee78 6ebb0fb 6d4c755 6ebb0fb bce84cc 6ebb0fb bce84cc 6d4c755 6ebb0fb 6d4c755 6ebb0fb bce84cc 6ebb0fb bce84cc 6ebb0fb bce84cc 6ebb0fb bce84cc 6d4c755 6ebb0fb 6d4c755 7bc8d30 6ebb0fb bce84cc 6ebb0fb bce84cc 6d4c755 6ebb0fb 6d4c755 3856741 6ebb0fb bce84cc 6ebb0fb bce84cc 6d4c755 6ebb0fb 6d4c755 f589e51 3856741 f589e51 bce84cc 3856741 bce84cc 6d4c755 bce84cc 6d4c755 3856741 bce84cc 6d4c755 f589e51 6ebb0fb bce84cc 3856741 6ebb0fb 7bc8d30 bce84cc 3856741 f589e51 6ebb0fb bce84cc 3856741 6ebb0fb bce84cc 6ebb0fb 7bc8d30 bce84cc 3856741 6ebb0fb f589e51 6ebb0fb a62923a 6ebb0fb bce84cc 6ebb0fb bce84cc 6ebb0fb bce84cc 6ebb0fb bce84cc 6ebb0fb bce84cc 6ebb0fb bce84cc 6ebb0fb 6d4c755 6ebb0fb 6d4c755 6ebb0fb bce84cc 3856741 6ebb0fb 7bc8d30 bce84cc 3856741 f589e51 6ebb0fb bce84cc 3856741 6ebb0fb bce84cc 6ebb0fb 7bc8d30 bce84cc 3856741 6ebb0fb f589e51 6ebb0fb a62923a 6ebb0fb 6d4c755 6ebb0fb 6d4c755 6ebb0fb 6d4c755 6ebb0fb 6d4c755 6ebb0fb 6d4c755 6ebb0fb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 |
import pandas as pd
import json
import numpy as np
# Define game order
GAME_ORDER = [
# "Super Mario Bros", # Commented out
"Super Mario Bros",
"Sokoban",
"2048",
"Candy Crush",
# "Tetris (complete)", # Commented out
"Tetris",
"Ace Attorney"
]
def get_organization(model_name):
m = model_name.lower()
if "claude" in m:
return "anthropic"
elif "gemini" in m:
return "google"
elif "o1" in m or "gpt" in m or "o3" in m or "o4" in m:
return "openai"
elif "deepseek" in m:
return "deepseek"
elif "llama" in m:
return "meta"
elif "grok" in m:
return "xai"
else:
return "unknown"
def get_sokoban_leaderboard(rank_data, limit_to_top_n=None):
data = rank_data.get("Sokoban", {}).get("results", [])
df = pd.DataFrame(data)
df = df.rename(columns={
"model": "Player",
"score": "Score",
"steps": "Steps",
"detail_box_on_target": "Detail Box On Target",
"cracked_levels": "Levels Cracked"
})
df["Organization"] = df["Player"].apply(get_organization)
# Define columns to keep, ensuring 'Score' is present
columns_to_keep = ["Player", "Organization", "Score", "Levels Cracked", "Detail Box On Target", "Steps"]
# Filter to only columns that actually exist in the DataFrame after renaming
df_columns = [col for col in columns_to_keep if col in df.columns]
df = df[df_columns]
if "Score" in df.columns:
df["Score"] = pd.to_numeric(df["Score"], errors='coerce')
df = df.sort_values("Score", ascending=False)
# Apply limit if specified
if limit_to_top_n is not None:
df = df.head(limit_to_top_n)
return df
def get_2048_leaderboard(rank_data, limit_to_top_n=None):
data = rank_data.get("2048", {}).get("results", [])
# --- Diagnostic Print Removed ---
# if data and isinstance(data, list) and len(data) > 0 and isinstance(data[0], dict):
# print(f"DEBUG_UTILS: Keys in first item of raw data for 2048: {list(data[0].keys())}")
# elif not data:
# print("DEBUG_UTILS: Raw data for 2048 is empty.")
# else:
# print("DEBUG_UTILS: Raw data for 2048 is not in the expected list of dicts format.")
# --- End Diagnostic Print Removed ---
df = pd.DataFrame(data)
# print(f"DEBUG_UTILS: Columns after pd.DataFrame(data): {df.columns.tolist()}") # REMOVED
df = df.rename(columns={
"model": "Player",
"score": "Score", # From new JSON structure
"details": "Details", # From new JSON structure
"highest_tail": "Highest Tail" # Added new column
# Old fields like "steps", "time", "rank" are removed
})
# print(f"DEBUG_UTILS: Columns after rename: {df.columns.tolist()}") # REMOVED
# Ensure 'Player' column exists before applying get_organization
if "Player" in df.columns:
df["Organization"] = df["Player"].apply(get_organization)
else:
# Handle case where 'Player' column might be missing after rename (should not happen with current logic)
# print("DEBUG_UTILS: 'Player' column not found after rename, skipping Organization.") # REMOVED
df["Organization"] = "unknown" # Fallback
columns_to_keep = ["Player", "Organization", "Score", "Highest Tail", "Details"] # Added "Highest Tail"
# Defensive check for 'Highest Tail' before filtering - REMOVED
# if 'highest_tail' in df.columns and 'Highest Tail' not in df.columns:
# print("DEBUG_UTILS: 'highest_tail' (lowercase) found, but 'Highest Tail' (capitalized) not. This indicates a rename issue.")
# elif 'Highest Tail' not in df.columns and 'highest_tail' not in df.columns:
# print("DEBUG_UTILS: Neither 'Highest Tail' nor 'highest_tail' found in columns before filtering.")
# df_columns = [col for col in columns_to_keep if col in df.columns] # REMOVED logic that used df_columns
# print(f"DEBUG_UTILS: df_columns selected (columns that are in columns_to_keep AND in df.columns): {df_columns}") # REMOVED
# Ensure all columns in columns_to_keep exist in df, fill with np.nan if not
for col_k in columns_to_keep:
if col_k not in df.columns:
# print(f"DEBUG_UTILS: Column '{col_k}' from columns_to_keep not found in DataFrame. Adding it with NaN values.") # REMOVED
df[col_k] = np.nan # Or some other default like 'n/a' if appropriate
df = df[columns_to_keep] # Use columns_to_keep directly after ensuring they exist
# print(f"DEBUG_UTILS: Columns after final selection: {df.columns.tolist()}") # REMOVED
if "Score" in df.columns:
df["Score"] = pd.to_numeric(df["Score"], errors='coerce')
df = df.sort_values("Score", ascending=False)
# Apply limit if specified
if limit_to_top_n is not None:
df = df.head(limit_to_top_n)
return df
def get_candy_leaderboard(rank_data, limit_to_top_n=None):
data = rank_data.get("Candy Crush", {}).get("results", [])
df = pd.DataFrame(data)
df = df.rename(columns={
"model": "Player",
"score": "Score",
"details": "Details"
})
df["Organization"] = df["Player"].apply(get_organization)
columns_to_keep = ["Player", "Organization", "Score", "Details"]
df_columns = [col for col in columns_to_keep if col in df.columns]
df = df[df_columns]
if "Score" in df.columns:
df["Score"] = pd.to_numeric(df["Score"], errors='coerce')
df = df.sort_values("Score", ascending=False)
# Apply limit if specified
if limit_to_top_n is not None:
df = df.head(limit_to_top_n)
return df
def get_tetris_planning_leaderboard(rank_data, limit_to_top_n=None):
data = rank_data.get("Tetris", {}).get("results", [])
df = pd.DataFrame(data)
df = df.rename(columns={
"model": "Player",
"score": "Score", # From new JSON structure
"details": "Details" # From new JSON structure
# Old fields like "steps_blocks", "rank" are removed
})
df["Organization"] = df["Player"].apply(get_organization)
columns_to_keep = ["Player", "Organization", "Score", "Details"]
df_columns = [col for col in columns_to_keep if col in df.columns]
df = df[df_columns]
if "Score" in df.columns:
df["Score"] = pd.to_numeric(df["Score"], errors='coerce')
df = df.sort_values("Score", ascending=False)
# Apply limit if specified
if limit_to_top_n is not None:
df = df.head(limit_to_top_n)
return df
def get_ace_attorney_leaderboard(rank_data, limit_to_top_n=None):
data = rank_data.get("Ace Attorney", {}).get("results", [])
df = pd.DataFrame(data)
df = df.rename(columns={
"model": "Player",
"score": "Score",
"progress": "Progress"
})
df["Organization"] = df["Player"].apply(get_organization)
# Define columns to keep
columns_to_keep = ["Player", "Organization", "Score", "Progress"]
# Filter to only columns that actually exist in the DataFrame after renaming
df_columns = [col for col in columns_to_keep if col in df.columns]
df = df[df_columns]
if "Score" in df.columns:
df["Score"] = pd.to_numeric(df["Score"], errors='coerce')
df = df.sort_values("Score", ascending=False) # Higher score is better
# Apply limit if specified
if limit_to_top_n is not None:
df = df.head(limit_to_top_n)
return df
def get_mario_planning_leaderboard(rank_data, limit_to_top_n=None):
data = rank_data.get("Super Mario Bros", {}).get("results", [])
df = pd.DataFrame(data)
df = df.rename(columns={
"model": "Player",
"score": "Score",
"detail_data": "Detail Data",
"progress": "Progress"
})
df["Organization"] = df["Player"].apply(get_organization)
# Define columns to keep
columns_to_keep = ["Player", "Organization", "Score", "Progress", "Detail Data"]
df_columns = [col for col in columns_to_keep if col in df.columns]
df = df[df_columns]
if "Score" in df.columns:
df["Score"] = pd.to_numeric(df["Score"], errors='coerce')
df = df.sort_values("Score", ascending=False)
# Apply limit if specified
if limit_to_top_n is not None:
df = df.head(limit_to_top_n)
return df
def calculate_rank_and_completeness(rank_data, selected_games):
# Dictionary to store DataFrames for each game
game_dfs = {}
# Get DataFrames for selected games
# if selected_games.get("Super Mario Bros"): # Commented out
# game_dfs["Super Mario Bros"] = get_mario_leaderboard(rank_data)
if selected_games.get("Super Mario Bros"):
game_dfs["Super Mario Bros"] = get_mario_planning_leaderboard(rank_data)
if selected_games.get("Sokoban"):
game_dfs["Sokoban"] = get_sokoban_leaderboard(rank_data)
if selected_games.get("2048"):
game_dfs["2048"] = get_2048_leaderboard(rank_data)
if selected_games.get("Candy Crush"):
game_dfs["Candy Crush"] = get_candy_leaderboard(rank_data)
# if selected_games.get("Tetris (complete)"): # Commented out
# game_dfs["Tetris (complete)"] = get_tetris_leaderboard(rank_data)
if selected_games.get("Tetris"):
game_dfs["Tetris"] = get_tetris_planning_leaderboard(rank_data)
if selected_games.get("Ace Attorney"):
game_dfs["Ace Attorney"] = get_ace_attorney_leaderboard(rank_data)
# Get all unique players
all_players = set()
for df in game_dfs.values():
all_players.update(df["Player"].unique())
all_players = sorted(list(all_players))
# Create results DataFrame
results = []
for player in all_players:
player_data = {
"Player": player,
"Organization": get_organization(player)
}
ranks = []
games_played = 0
# Calculate rank and completeness for each game
for game in GAME_ORDER:
if game in game_dfs:
df = game_dfs[game]
if player in df["Player"].values:
games_played += 1
# Get player's score based on game type
# if game == "Super Mario Bros": # Commented out
# player_score = df[df["Player"] == player]["Score"].iloc[0]
# rank = len(df[df["Score"] > player_score]) + 1
if game == "Super Mario Bros":
player_score = df[df["Player"] == player]["Score"].iloc[0]
rank = len(df[df["Score"] > player_score]) + 1
elif game == "Sokoban":
player_score = df[df["Player"] == player]["Score"].iloc[0]
rank = len(df[df["Score"] > player_score]) + 1
elif game == "2048":
player_score = df[df["Player"] == player]["Score"].iloc[0]
rank = len(df[df["Score"] > player_score]) + 1
elif game == "Candy Crush":
player_score = df[df["Player"] == player]["Score"].iloc[0]
rank = len(df[df["Score"] > player_score]) + 1
elif game in ["Tetris"]:
player_score = df[df["Player"] == player]["Score"].iloc[0]
rank = len(df[df["Score"] > player_score]) + 1
elif game == "Ace Attorney":
player_score = df[df["Player"] == player]["Score"].iloc[0]
rank = len(df[df["Score"] > player_score]) + 1
ranks.append(rank)
player_data[f"{game} Score"] = player_score
else:
player_data[f"{game} Score"] = 'n/a'
# Calculate average rank and completeness for sorting
if ranks:
player_data["Average Rank"] = round(np.mean(ranks), 2)
player_data["Games Played"] = games_played
else:
player_data["Average Rank"] = float('inf')
player_data["Games Played"] = 0
results.append(player_data)
# Create DataFrame and sort by average rank and completeness
df_results = pd.DataFrame(results)
if not df_results.empty:
# Sort by average rank (ascending) and games played (descending)
df_results = df_results.sort_values(
by=["Average Rank", "Games Played"],
ascending=[True, False]
)
# Drop the sorting columns
df_results = df_results.drop(["Average Rank", "Games Played"], axis=1)
return df_results
def get_combined_leaderboard(rank_data, selected_games, limit_to_top_n=None):
"""
Get combined leaderboard for selected games
Args:
rank_data (dict): Dictionary containing rank data
selected_games (dict): Dictionary of game names and their selection status
limit_to_top_n (int, optional): Limit results to top N entries. None means no limit.
Returns:
pd.DataFrame: Combined leaderboard DataFrame
"""
# Dictionary to store DataFrames for each game
game_dfs = {}
# Get DataFrames for selected games
# if selected_games.get("Super Mario Bros"): # Commented out
# game_dfs["Super Mario Bros"] = get_mario_leaderboard(rank_data)
if selected_games.get("Super Mario Bros"):
game_dfs["Super Mario Bros"] = get_mario_planning_leaderboard(rank_data)
if selected_games.get("Sokoban"):
game_dfs["Sokoban"] = get_sokoban_leaderboard(rank_data)
if selected_games.get("2048"):
game_dfs["2048"] = get_2048_leaderboard(rank_data)
if selected_games.get("Candy Crush"):
game_dfs["Candy Crush"] = get_candy_leaderboard(rank_data)
# if selected_games.get("Tetris (complete)"): # Commented out
# game_dfs["Tetris (complete)"] = get_tetris_leaderboard(rank_data)
if selected_games.get("Tetris"):
game_dfs["Tetris"] = get_tetris_planning_leaderboard(rank_data)
if selected_games.get("Ace Attorney"):
game_dfs["Ace Attorney"] = get_ace_attorney_leaderboard(rank_data)
# Get all unique players
all_players = set()
for df in game_dfs.values():
all_players.update(df["Player"].unique())
all_players = sorted(list(all_players))
# Create results DataFrame
results = []
for player in all_players:
player_data = {
"Player": player,
"Organization": get_organization(player)
}
# Add scores for each game
for game in GAME_ORDER:
if game in game_dfs:
df = game_dfs[game]
if player in df["Player"].values:
# if game == "Super Mario Bros": # Commented out
# player_data[f"{game} Score"] = df[df["Player"] == player]["Score"].iloc[0]
if game == "Super Mario Bros":
player_data[f"{game} Score"] = df[df["Player"] == player]["Score"].iloc[0]
elif game == "Sokoban":
player_data[f"{game} Score"] = df[df["Player"] == player]["Score"].iloc[0]
elif game == "2048":
player_data[f"{game} Score"] = df[df["Player"] == player]["Score"].iloc[0]
elif game == "Candy Crush":
player_data[f"{game} Score"] = df[df["Player"] == player]["Score"].iloc[0]
elif game in ["Tetris"]:
player_data[f"{game} Score"] = df[df["Player"] == player]["Score"].iloc[0]
elif game == "Ace Attorney":
player_data[f"{game} Score"] = df[df["Player"] == player]["Score"].iloc[0]
else:
player_data[f"{game} Score"] = 'n/a'
results.append(player_data)
# Create DataFrame
df_results = pd.DataFrame(results)
# Calculate normalized scores and average normalized score
if not df_results.empty:
# Import the normalize_values function from data_visualization
from data_visualization import normalize_values
# Calculate normalized scores for each game
game_score_columns = []
for game in GAME_ORDER:
score_col = f"{game} Score"
if score_col in df_results.columns:
game_score_columns.append(score_col)
# Get numeric values, replacing 'n/a' with NaN
# Use where() to avoid FutureWarning about downcasting in replace()
series = df_results[score_col].copy()
series = series.where(series != 'n/a', np.nan)
numeric_scores = pd.to_numeric(series, errors='coerce')
# Skip games where all scores are NaN or 0
valid_scores = numeric_scores.dropna()
if len(valid_scores) > 0 and valid_scores.sum() > 0:
mean = valid_scores.mean()
std = valid_scores.std() if len(valid_scores) > 1 else 0
# Calculate normalized scores for all players
normalized_scores = []
for _, row in df_results.iterrows():
score = row[score_col]
if score == 'n/a' or pd.isna(score):
normalized_scores.append(0)
else:
normalized_scores.append(normalize_values([float(score)], mean, std)[0])
df_results[f"norm_{score_col}"] = normalized_scores
else:
# If no valid scores, set all normalized scores to 0
df_results[f"norm_{score_col}"] = 0
# Calculate average normalized score across games
normalized_columns = [f"norm_{col}" for col in game_score_columns if f"norm_{col}" in df_results.columns]
if normalized_columns:
df_results["Avg Normalized Score"] = df_results[normalized_columns].mean(axis=1).round(2)
else:
df_results["Avg Normalized Score"] = 0.0
# Reorder columns to put Avg Normalized Score after Organization
base_columns = ["Player", "Organization", "Avg Normalized Score"]
game_columns = [col for col in df_results.columns if col.endswith(" Score") and not col.startswith("norm_") and col != "Avg Normalized Score"]
other_columns = [col for col in df_results.columns if col not in base_columns + game_columns and not col.startswith("norm_")]
# Create final column order
final_columns = base_columns + game_columns + other_columns
df_results = df_results[final_columns]
# Sort by average normalized score in descending order
df_results = df_results.sort_values("Avg Normalized Score", ascending=False)
# Apply limit if specified
if limit_to_top_n is not None:
df_results = df_results.head(limit_to_top_n)
return df_results
|