File size: 32,931 Bytes
5a80058
6ebb0fb
 
 
6d4c755
 
6ebb0fb
 
 
 
 
 
6d4c755
6ebb0fb
 
 
 
 
 
7bc8d30
6ebb0fb
f589e51
 
6ebb0fb
5a80058
 
 
6ebb0fb
96a5c70
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a62923a
96a5c70
5a80058
 
 
 
 
6ebb0fb
 
bce84cc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5a80058
 
 
bce84cc
 
 
5a80058
bce84cc
 
 
 
 
 
 
 
 
 
 
5a80058
bce84cc
6ebb0fb
 
 
5a80058
 
 
 
6d4c755
5a80058
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a62923a
5a80058
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6ebb0fb
 
 
 
5a80058
 
 
6ebb0fb
6d4c755
342518d
 
 
 
a62923a
 
342518d
 
6ebb0fb
342518d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6ebb0fb
342518d
 
c998efb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3856741
5a80058
3856741
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
342518d
3856741
342518d
3856741
 
 
 
 
 
c998efb
3856741
 
 
 
 
 
 
 
 
 
 
 
6ebb0fb
5a80058
3856741
 
 
 
 
5a80058
342518d
 
3856741
 
 
 
342518d
5a80058
c998efb
 
 
5a80058
a62923a
9578973
5a80058
 
 
 
 
 
 
 
 
 
342518d
6ebb0fb
 
342518d
 
6d4c755
 
5a80058
 
3856741
5a80058
 
 
 
 
 
 
 
6ebb0fb
6d4c755
455f800
7bc8d30
5a80058
229854f
a62923a
 
3856741
 
a62923a
229854f
a62923a
5a80058
a62923a
 
6d4c755
 
 
 
 
5a80058
6d4c755
 
 
 
 
 
 
 
 
 
 
 
 
5a80058
8e60916
5a80058
 
 
 
8e60916
 
 
 
 
 
 
5a80058
8e60916
 
5a80058
 
 
 
 
 
 
 
 
 
 
5d62091
5a80058
 
 
8e60916
 
 
5a80058
 
 
 
 
8e60916
5d62091
 
5a80058
a62923a
 
5a80058
 
6d4c755
 
 
 
 
 
 
 
 
 
 
5a80058
3856741
 
 
5a80058
6d4c755
a62923a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5a80058
 
a62923a
8e60916
5a80058
8e60916
 
5a80058
8e60916
5a80058
 
 
 
 
 
a62923a
 
 
 
 
 
 
455f800
 
6d4c755
 
 
 
 
 
 
5a80058
6d4c755
 
5a80058
6d4c755
 
 
455f800
5a80058
 
 
 
 
 
 
 
6d4c755
5a80058
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a62923a
5a80058
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a62923a
6d4c755
 
 
 
5a80058
 
 
 
 
 
 
 
 
 
 
a62923a
5a80058
 
 
 
 
 
a62923a
5a80058
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a62923a
6d4c755
 
 
 
 
 
 
 
 
5a80058
6d7b424
5a80058
 
 
 
 
 
 
 
a62923a
5a80058
 
 
 
 
 
a62923a
5a80058
a62923a
5a80058
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6d4c755
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5a80058
 
6d4c755
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
import plotly.graph_objects as go
import numpy as np
import pandas as pd
import json
import os
from datetime import datetime
from leaderboard_utils import (
    get_combined_leaderboard,
    GAME_ORDER
)

# Load model colors
with open('assets/model_color.json', 'r', encoding='utf-8') as f:
    MODEL_COLORS = json.load(f)

GAME_SCORE_COLUMNS = {
    "Super Mario Bros": "Score",
    "Sokoban": "Levels Cracked",
    "2048": "Score",
    "Candy Crush": "Average Score",
    "Tetris (complete)": "Score",
    "Tetris (planning only)": "Score",
    "Ace Attorney": "Score"
}
def get_model_prefix(name):
    return name.split('-')[0]


def normalize_values(values, mean, std):
    """
    Normalize values using z-score and scale to 0-100 range
    
    Args:
        values (list): List of values to normalize
        mean (float): Mean value for normalization
        std (float): Standard deviation for normalization
        
    Returns:
        list: Normalized values scaled to 0-100 range
    """
    if std == 0:
        return [50 if v > 0 else 0 for v in values]  # Handle zero std case
    z_scores = [(v - mean) / std for v in values]
    # Scale z-scores to 0-100 range, with mean at 50
    scaled_values = [max(0, min(100, (z * 30) + 35)) for z in z_scores]
    return scaled_values
def simplify_model_name(name):
    if name == "claude-3-7-sonnet-20250219(thinking)":
        name ="claude-3-7-thinking"
    parts = name.split('-')
    return '-'.join(parts[:4]) + '-...' if len(parts) > 4 else name

def create_horizontal_bar_chart(df, game_name):
    """Creates a horizontal bar chart for a given game's leaderboard data."""
    
    if df is None or df.empty:
        # Return a placeholder or an empty figure if there's no data
        fig = go.Figure()
        fig.update_layout(
            title=f"No data available for {game_name}",
            xaxis_title="Score",
            yaxis_title="Player",
            plot_bgcolor='rgba(0,0,0,0)',
            paper_bgcolor='rgba(0,0,0,0)',
            font=dict(color='#2c3e50')
        )
        return fig

    score_col = "Score" # Standardized score column name

    if score_col not in df.columns:
        fig = go.Figure()
        fig.update_layout(title=f"'{score_col}' column not found for {game_name}")
        return fig

    # Ensure the score column is numeric for sorting and plotting
    df[score_col] = pd.to_numeric(df[score_col], errors='coerce')
    df_cleaned = df.dropna(subset=[score_col]) # Remove rows where score is NaN after conversion

    if df_cleaned.empty:
        fig = go.Figure()
        fig.update_layout(title=f"No valid score data to plot for {game_name}")
        return fig

    # Sort values for chart display (lowest score at the top of the chart)
    # The input df is already sorted descending by score from leaderboard_utils
    # Re-sorting ascending=True here means player with lowest score is at the top of the y-axis categories
    df_sorted = df_cleaned.sort_values(by=score_col, ascending=True)

    fig = go.Figure(
        go.Bar(
            y=df_sorted['Player'], 
            x=df_sorted[score_col], 
            orientation='h',
            marker=dict(
                color=df_sorted[score_col],
                colorscale='Viridis', # Example colorscale, can be changed
                line=dict(color='#2c3e50', width=1)
            ),
            hovertext=df_sorted[score_col].round(2).astype(str) + ' points',
            hoverinfo='y+text'
        )
    )

    fig.update_layout(
        title=dict(
            text=f'{game_name} Scores',
            x=0.5,
            font=dict(size=20, color='#2c3e50')
        ),
        xaxis_title="Score",
        yaxis_title="Player",
        plot_bgcolor='rgba(0,0,0,0)', # Transparent plot background
        paper_bgcolor='rgba(0,0,0,0)', # Transparent paper background
        font=dict(color='#2c3e50'), # Dark text for better readability on light backgrounds
        margin=dict(l=150, r=20, t=50, b=50), # Adjust margins for player names
        yaxis=dict(
            automargin=True, 
            tickfont=dict(size=10)
        ),
        xaxis=dict(gridcolor='#e0e0e0') # Light gridlines for x-axis
    )
    
    return fig

def create_radar_charts(df):
    game_cols = [c for c in df.columns if c.endswith(" Score")]
    categories = [c.replace(" Score", "") for c in game_cols]

    for col in game_cols:
        vals = df[col].replace("n/a", 0).infer_objects(copy=False).astype(float)
        mean, std = vals.mean(), vals.std()
        df[f"norm_{col}"] = normalize_values(vals, mean, std)

    fig = go.Figure()
    for _, row in df.iterrows():
        player = row["Player"]
        r = [row[f"norm_{c}"] for c in game_cols]

        color = MODEL_COLORS.get(player, '#808080')  # fallback to gray
        fig.add_trace(go.Scatterpolar(
            r=r + [r[0]],
            theta=categories + [categories[0]],
            mode='lines+markers',
            fill='toself',
            name=player,
            line=dict(color=color, width=2),
            marker=dict(color=color),
            fillcolor=color + '33',  # add transparency to fill (33 = ~20% opacity)
            opacity=0.8
        ))


    fig.update_layout(
        autosize=False,
        width=800,
        height=600,
        margin=dict(l=80, r=150, t=20, b=20),
        title=dict(
            text="Radar Chart of AI Performance (Normalized)",
            pad=dict(t=10)
        ),
        polar=dict(radialaxis=dict(visible=True, range=[0, 100])),
        legend=dict(
            font=dict(size=9),
            itemsizing='trace',
            x=1.4,
            y=1,
            xanchor='left',
            yanchor='top',
            bgcolor='rgba(255,255,255,0.6)',
            bordercolor='gray',
            borderwidth=1
        )
    )
    return fig

def get_combined_leaderboard_with_radar(rank_data, selected_games):
    df = get_combined_leaderboard(rank_data, selected_games)
    # Create a copy for visualization to avoid modifying the original
    df_viz = df.copy()
    return df, create_radar_charts(df_viz)

def create_group_bar_chart(df, top_n=5):
    game_cols = {}
    for game in GAME_ORDER:
        col = f"{game} Score"
        if col in df.columns:
            # Replace "n/a" with np.nan and handle downcasting properly
            df[col] = df[col].replace("n/a", np.nan).infer_objects(copy=False).astype(float)
            if df[col].notna().any():
                game_cols[game] = col

    if not game_cols:
        return go.Figure().update_layout(title="No data available")

    # Drop players with no data
    df = df.dropna(subset=game_cols.values(), how='all')

    # Normalize scores per game
    for game, col in game_cols.items():
        valid = df[col].dropna()
        norm_col = f"norm_{col}"
        if valid.empty:
            df[norm_col] = np.nan
        else:
            mean, std = valid.mean(), valid.std()
            normalized = normalize_values(valid, mean, std)
            df[norm_col] = np.nan
            df.loc[valid.index, norm_col] = normalized

    # Build consistent game order (X-axis)
    sorted_games = [game for game in GAME_ORDER if f"norm_{game} Score" in df.columns]
    
    # Format game names with line breaks
    formatted_games = []
    for game in sorted_games:
        if len(game) > 10 and ' ' in game:
            parts = game.split(' ')
            midpoint = len(parts) // 2
            formatted_name = ' '.join(parts[:midpoint]) + '<br>' + ' '.join(parts[midpoint:])
            formatted_games.append(formatted_name)
        else:
            formatted_games.append(game)
    
    # Create mapping from original to formatted names
    game_display_map = dict(zip(sorted_games, formatted_games))
    
    # For each game, get top performers and create combined x-axis categories
    fig = go.Figure()
    all_x_categories = []
    all_players = set()
    unique_x_labels = []
    
    # First pass: collect all players and create x-axis categories
    game_rankings = {}
    for game in sorted_games:
        col = f"norm_{game} Score"
        # Get valid scores for this game and sort by score (highest first)
        game_data = df[df[col].notna()].copy()
        game_data = game_data.sort_values(by=col, ascending=False)
        
        # Store rankings for this game (limit to top_n)
        game_rankings[game] = []
        for i, (_, row) in enumerate(game_data.iterrows()):
            if i >= top_n:  # Limit to top_n performers
                break
                
            player = row["Player"]
            score = row[col]
            rank = i + 1
            x_category = f"{game_display_map[game]}<br>#{rank}"
            game_rankings[game].append({
                'player': player,
                'score': score,
                'x_category': x_category,
                'rank': rank
            })
            all_x_categories.append(x_category)
            all_players.add(player)
            
            # Show label at the middle position based on number of models
            middle_position = (top_n + 1) // 2
            if rank == middle_position:
                # Special case for Super Mario Bros (planning only)
                if game == "Super Mario Bros":
                    unique_x_labels.append("SMB")
                else:
                    unique_x_labels.append(game_display_map[game])  # Show just game name without rank
            else:
                unique_x_labels.append("")  # Empty string for other ranks
    
    # Second pass: create traces for each player
    for player in sorted(all_players):
        x_vals = []
        y_vals = []
        
        for game in sorted_games:
            # Find this player's data for this game
            player_data = None
            for data in game_rankings[game]:
                if data['player'] == player:
                    player_data = data
                    break
            
            if player_data:
                x_vals.append(player_data['x_category'])
                y_vals.append(player_data['score'])
        
        if x_vals:  # Only add trace if player has data
            fig.add_trace(go.Bar(
                name=player,
                x=x_vals,
                y=y_vals,
                marker_color=MODEL_COLORS.get(player, '#808080'),
                hovertemplate="<b>%{fullData.name}</b><br>Score: %{y:.1f}<extra></extra>"
            ))

    fig.update_layout(
        autosize=True,
        height=550,
        margin=dict(l=50, r=50, t=20, b=20),
        title=dict(text=f"Grouped Bar Chart - Top {top_n} Performers by Game", pad=dict(t=10)),
        xaxis_title="Games (Ranked by Performance)",
        yaxis_title="Normalized Score",
        xaxis=dict(
            categoryorder='array',
            categoryarray=all_x_categories,
            tickangle=0,  # Keep text horizontal since we're using line breaks
            ticktext=unique_x_labels,  # Show labels only for first occurrence
            tickvals=all_x_categories
        ),
        barmode='group',
        bargap=0.2,        # Gap between game categories
        bargroupgap=0.05,  # Gap between bars in a group
        uniformtext=dict(mode='hide', minsize=8),  # Hide text that doesn't fit
        legend=dict(
            font=dict(size=12),
            title="Choose your model 💡 (click / double-click)",
            itemsizing='trace',
            x=1.1,
            y=1,
            xanchor='left',
            yanchor='top',
            bgcolor='rgba(255,255,255,0.6)',
            bordercolor='gray',
            borderwidth=1
        )
    )

    return fig



def get_combined_leaderboard_with_group_bar(rank_data, selected_games, top_n=5, limit_to_top_n=None):
    df = get_combined_leaderboard(rank_data, selected_games, limit_to_top_n)
    # Create a copy for visualization to avoid modifying the original
    df_viz = df.copy()
    return df, create_group_bar_chart(df_viz, top_n)

def hex_to_rgba(hex_color, alpha=0.2):
    hex_color = hex_color.lstrip('#')
    r = int(hex_color[0:2], 16)
    g = int(hex_color[2:4], 16)
    b = int(hex_color[4:6], 16)
    return f'rgba({r}, {g}, {b}, {alpha})'


def create_single_radar_chart(df, selected_games=None, highlight_models=None, chart_title=None, top_n=None, full_df=None):
    if selected_games is None:
        selected_games = ['Super Mario Bros', '2048', 'Candy Crush', 'Sokoban', 'Ace Attorney']

    # Format game names
    formatted_games = []
    for game in selected_games:
        if game == 'Super Mario Bros':
            formatted_games.append('SMB')  # Clean name without planning only
        else:
            formatted_games.append(game)  # Keep other names as is

    game_cols = [f"{game} Score" for game in selected_games]
    categories = formatted_games

    # Use full dataset for normalization to keep consistent scale
    # If full_df is not provided, use the current df (fallback for backward compatibility)
    normalization_df = full_df if full_df is not None else df
    
    # Normalize using the full dataset but apply to the limited df
    for col in game_cols:
        # Get normalization parameters from full dataset
        # Use where() to avoid FutureWarning about downcasting in replace()
        full_series = normalization_df[col].copy()
        full_series = full_series.where(full_series != "n/a", 0)
        full_vals = full_series.astype(float)
        mean, std = full_vals.mean(), full_vals.std()
        
        # Apply normalization to the limited df
        # Use where() to avoid FutureWarning about downcasting in replace()
        limited_series = df[col].copy()
        limited_series = limited_series.where(limited_series != "n/a", 0)
        limited_vals = limited_series.astype(float)
        df[f"norm_{col}"] = normalize_values(limited_vals, mean, std)

    # Group players by prefix and sort alphabetically
    model_groups = {}
    for player in df["Player"]:
        prefix = get_model_prefix(player)
        model_groups.setdefault(prefix, []).append(player)
    
    # Sort each group alphabetically
    for prefix in model_groups:
        model_groups[prefix] = sorted(model_groups[prefix], key=str.lower)
    
    # Get sorted prefixes and create ordered player list
    sorted_prefixes = sorted(model_groups.keys(), key=str.lower)
    grouped_players = []
    for prefix in sorted_prefixes:
        grouped_players.extend(model_groups[prefix])

    fig = go.Figure()

    for player in grouped_players:
        row = df[df["Player"] == player]
        if row.empty:
            continue
        row = row.iloc[0]

        is_highlighted = highlight_models and player in highlight_models
        color = 'red' if is_highlighted else MODEL_COLORS.get(player, '#808080')
        fillcolor = 'rgba(255, 0, 0, 0.4)' if is_highlighted else hex_to_rgba(color, 0.2)

        r = [row[f"norm_{col}"] for col in game_cols]

        # Convert player name to lowercase for the legend
        display_name = player.lower()

        fig.add_trace(go.Scatterpolar(
            r=r + [r[0]],
            theta=categories + [categories[0]],
            mode='lines+markers',
            fill='toself',
            name=display_name,  # Use lowercase name in legend
            line=dict(color=color, width=6 if is_highlighted else 2),
            marker=dict(color=color, size=10 if is_highlighted else 6),
            fillcolor=fillcolor,
            opacity=1.0 if is_highlighted else 0.7,
            hovertemplate='<b>%{fullData.name}</b><br>Game: %{theta}<br>Score: %{r:.1f}<extra></extra>'
        ))

    # Dynamic title based on the data source and top_n
    if chart_title is None:
        if top_n is not None:
            chart_title = f"Radar Chart - Top {top_n} Performers by Game"
        else:
            # Fallback title
            if len(df) <= 10:
                chart_title = "🎮 Agent Performance Across Games"
            else:
                chart_title = "🤖 Model Performance Across Games"
    
    fig.update_layout(
        autosize=True,
        height=550,  # Reduced height for better proportion with legend
        margin=dict(l=400, r=100, t=20, b=20),
        title=dict(
            text=chart_title,
            x=0.5,
            xanchor='center',
            yanchor='top',
            y=0.95,
            font=dict(size=20),
            pad=dict(b=20)
        ),
        polar=dict(
            radialaxis=dict(
                visible=True, 
                range=[0, 100],
                tickangle=45,
                tickfont=dict(size=12),
                gridcolor='lightgray',
                gridwidth=1,
                angle=45
            ),
            angularaxis=dict(
                tickfont=dict(size=14, weight='bold'),
                tickangle=0
            )
        ),
        legend=dict(
            font=dict(size=12),
            title="Choose your model 💡 (click / double-click)",
            itemsizing='trace',
            x=-1.4,  # Moved further left
            y=0.8,     # Moved to top
            yanchor='top',
            xanchor='left',
            bgcolor='rgba(255,255,255,0.6)',
            bordercolor='gray',
            borderwidth=1
        )
    )

    fig.update_layout(
        legend=dict(
            itemclick="toggleothers",  # This will make clicked item the only visible one
            itemdoubleclick="toggle"   # Double click toggles visibility
        )
    )

    return fig

def get_combined_leaderboard_with_single_radar(rank_data, selected_games, highlight_models=None, limit_to_top_n=None, chart_title=None, top_n=None):
    # Get full dataset for normalization
    full_df = get_combined_leaderboard(rank_data, selected_games, limit_to_top_n=None)
    
    # Get limited dataset for display
    df = get_combined_leaderboard(rank_data, selected_games, limit_to_top_n)
    
    selected_game_names = [g for g, sel in selected_games.items() if sel]
    
    # Create copies for visualization to avoid modifying the original
    df_viz = df.copy()
    full_df_viz = full_df.copy()
    
    return df, create_single_radar_chart(df_viz, selected_game_names, highlight_models, chart_title, top_n, full_df_viz)

def create_organization_radar_chart(rank_data):
    df = get_combined_leaderboard(rank_data, {g: True for g in GAME_ORDER})
    orgs = df["Organization"].unique()
    game_cols = [f"{g} Score" for g in GAME_ORDER if f"{g} Score" in df.columns]
    categories = [g.replace(" Score", "") for g in game_cols]

    avg_df = pd.DataFrame([
        {
            **{col: df[df["Organization"] == org][col].where(df[df["Organization"] == org][col] != "n/a", 0).astype(float).mean() for col in game_cols},
            "Organization": org
        }
        for org in orgs
    ])

    for col in game_cols:
        vals = avg_df[col]
        mean, std = vals.mean(), vals.std()
        avg_df[f"norm_{col}"] = normalize_values(vals, mean, std)

    fig = go.Figure()
    for _, row in avg_df.iterrows():
        r = [row[f"norm_{col}"] for col in game_cols]
        fig.add_trace(go.Scatterpolar(
            r=r + [r[0]],
            theta=categories + [categories[0]],
            mode='lines+markers',
            fill='toself',
            name=row["Organization"]
        ))

    fig.update_layout(
        autosize=False,
        width=800,
        height=600,
        margin=dict(l=80, r=150, t=20, b=20),
        title=dict(
            text="Radar Chart: Organization Performance (Normalized)",
            pad=dict(t=10)
        ),
        polar=dict(radialaxis=dict(visible=True, range=[0, 100])),
        legend=dict(
            font=dict(size=9),
            itemsizing='trace',
            x=1.4,
            y=1,
            xanchor='left',
            yanchor='top',
            bgcolor='rgba(255,255,255,0.6)',
            bordercolor='gray',
            borderwidth=1
        )
    )
    return fig

def create_top_players_radar_chart(rank_data, n=5):
    df = get_combined_leaderboard(rank_data, {g: True for g in GAME_ORDER})
    top_players = df.head(n)["Player"].tolist()
    top_df = df[df["Player"].isin(top_players)]

    game_cols = [f"{g} Score" for g in GAME_ORDER if f"{g} Score" in df.columns]
    categories = [g.replace(" Score", "") for g in game_cols]

    for col in game_cols:
        # Replace "n/a" with 0 and handle downcasting properly
        # Use where() to avoid FutureWarning about downcasting in replace()
        series = top_df[col].copy()
        series = series.where(series != "n/a", 0)
        vals = series.astype(float)
        mean, std = vals.mean(), vals.std()
        top_df[f"norm_{col}"] = normalize_values(vals, mean, std)

    fig = go.Figure()
    for _, row in top_df.iterrows():
        r = [row[f"norm_{col}"] for col in game_cols]
        fig.add_trace(go.Scatterpolar(
            r=r + [r[0]],
            theta=categories + [categories[0]],
            mode='lines+markers',
            fill='toself',
            name=row["Player"]
        ))

    fig.update_layout(
        autosize=False,
        width=800,
        height=600,
        margin=dict(l=80, r=150, t=20, b=20),
        title=dict(
            text=f"Top {n} Players Radar Chart (Normalized)",
            pad=dict(t=10)
        ),
        polar=dict(radialaxis=dict(visible=True, range=[0, 100])),
        legend=dict(
            font=dict(size=9),
            itemsizing='trace',
            x=1.4,
            y=1,
            xanchor='left',
            yanchor='top',
            bgcolor='rgba(255,255,255,0.6)',
            bordercolor='gray',
            borderwidth=1
        )
    )
    return fig

def create_player_radar_chart(rank_data, player_name):
    df = get_combined_leaderboard(rank_data, {g: True for g in GAME_ORDER})
    player_df = df[df["Player"] == player_name]

    if player_df.empty:
        return go.Figure().update_layout(
            title=dict(text="Player not found", pad=dict(t=10)),
            autosize=False,
            width=800,
            height=400
        )

    game_cols = [f"{g} Score" for g in GAME_ORDER if f"{g} Score" in df.columns]
    categories = [g.replace(" Score", "") for g in game_cols]

    for col in game_cols:
        # Replace "n/a" with 0 and handle downcasting properly
        # Use where() to avoid FutureWarning about downcasting in replace()
        player_series = player_df[col].copy()
        player_series = player_series.where(player_series != "n/a", 0)
        vals = player_series.astype(float)
        
        df_series = df[col].copy()
        df_series = df_series.where(df_series != "n/a", 0)
        df_vals = df_series.astype(float)
        mean, std = df_vals.mean(), df_vals.std()
        player_df[f"norm_{col}"] = normalize_values(vals, mean, std)

    fig = go.Figure()
    for _, row in player_df.iterrows():
        r = [row[f"norm_{col}"] for col in game_cols]
        fig.add_trace(go.Scatterpolar(
            r=r + [r[0]],
            theta=categories + [categories[0]],
            mode='lines+markers',
            fill='toself',
            name=row["Player"]
        ))

    fig.update_layout(
        autosize=False,
        width=800,
        height=600,
        margin=dict(l=80, r=150, t=20, b=20),
        title=dict(
            text=f"{row['Player']} Radar Chart (Normalized)",
            pad=dict(t=10)
        ),
        polar=dict(radialaxis=dict(visible=True, range=[0, 100])),
        legend=dict(
            font=dict(size=9),
            itemsizing='trace',
            x=1.4,
            y=1,
            xanchor='left',
            yanchor='top',
            bgcolor='rgba(255,255,255,0.6)',
            bordercolor='gray',
            borderwidth=1
        )
    )
    return fig

def save_normalized_data(df, selected_games, filename="normalized_data.json"):
    """
    Save normalized data to a JSON file for caching
    
    Args:
        df (pd.DataFrame): DataFrame with raw scores
        selected_games (dict): Dictionary of selected games
        filename (str): Output filename
    """
    game_cols = [f"{game} Score" for game in GAME_ORDER if f"{game} Score" in df.columns]
    
    # Calculate normalization parameters and normalized values
    normalization_data = {
        "timestamp": datetime.now().isoformat(),
        "selected_games": selected_games,
        "games": {},
        "players": {}
    }
    
    # Store normalization parameters per game
    for col in game_cols:
        game_name = col.replace(" Score", "")
        vals = df[col].replace("n/a", 0).infer_objects(copy=False).astype(float)
        mean, std = vals.mean(), vals.std()
        
        normalization_data["games"][game_name] = {
            "mean": mean,
            "std": std,
            "raw_scores": vals.to_dict()
        }
    
    # Store normalized scores per player
    for _, row in df.iterrows():
        player = row["Player"]
        player_data = {"organization": row.get("Organization", "unknown")}
        
        for col in game_cols:
            game_name = col.replace(" Score", "")
            raw_score = row[col]
            
            if raw_score != "n/a":
                raw_score = float(raw_score)
                mean = normalization_data["games"][game_name]["mean"]
                std = normalization_data["games"][game_name]["std"]
                normalized = normalize_values([raw_score], mean, std)[0]
            else:
                raw_score = "n/a"
                normalized = 0
            
            player_data[f"{game_name}_raw"] = raw_score
            player_data[f"{game_name}_normalized"] = normalized
        
        normalization_data["players"][player] = player_data
    
    # Save to file
    os.makedirs("cache", exist_ok=True)
    filepath = os.path.join("cache", filename)
    
    with open(filepath, 'w') as f:
        json.dump(normalization_data, f, indent=2)
    
    print(f"Normalized data saved to {filepath}")
    return filepath

def load_normalized_data(filename="normalized_data.json"):
    """
    Load normalized data from a JSON file
    
    Args:
        filename (str): Input filename
        
    Returns:
        dict: Normalized data or None if file doesn't exist
    """
    filepath = os.path.join("cache", filename)
    
    if not os.path.exists(filepath):
        return None
    
    try:
        with open(filepath, 'r') as f:
            data = json.load(f)
        print(f"Normalized data loaded from {filepath}")
        return data
    except Exception as e:
        print(f"Error loading normalized data: {e}")
        return None

def get_normalized_scores_from_cache(players, games, cache_data):
    """
    Extract normalized scores from cached data
    
    Args:
        players (list): List of player names
        games (list): List of game names
        cache_data (dict): Cached normalization data
        
    Returns:
        pd.DataFrame: DataFrame with normalized scores
    """
    data = []
    
    for player in players:
        if player in cache_data["players"]:
            player_data = {"Player": player}
            player_cache = cache_data["players"][player]
            
            for game in games:
                raw_key = f"{game}_raw"
                norm_key = f"{game}_normalized"
                
                if raw_key in player_cache:
                    player_data[f"{game} Score"] = player_cache[raw_key]
                    player_data[f"norm_{game} Score"] = player_cache[norm_key]
                else:
                    player_data[f"{game} Score"] = "n/a"
                    player_data[f"norm_{game} Score"] = 0
            
            data.append(player_data)
    
    return pd.DataFrame(data)

def save_visualization(fig, filename):
    fig.write_image(filename)

def generate_and_save_normalized_data(rank_data, filename="normalized_data.json"):
    """
    Generate normalized data for all games and save to file
    
    Args:
        rank_data (dict): Raw rank data
        filename (str): Output filename
        
    Returns:
        str: Path to saved file
    """
    # Select all games
    all_games = {game: True for game in GAME_ORDER}
    
    # Get combined leaderboard
    df = get_combined_leaderboard(rank_data, all_games)
    
    # Save normalized data
    return save_normalized_data(df, all_games, filename)

def create_single_radar_chart_with_cache(df, selected_games=None, highlight_models=None, use_cache=True, cache_filename="normalized_data.json"):
    """
    Create radar chart with optional caching support
    """
    if selected_games is None:
        selected_games = ['Super Mario Bros', '2048', 'Candy Crush', 'Sokoban', 'Ace Attorney']

    # Try to load from cache first
    cached_data = None
    if use_cache:
        cached_data = load_normalized_data(cache_filename)
    
    if cached_data:
        # Use cached normalized data
        players = df["Player"].tolist()
        df_normalized = get_normalized_scores_from_cache(players, selected_games, cached_data)
        # Merge with original df to get Organization info
        df_normalized = df_normalized.merge(df[["Player", "Organization"]], on="Player", how="left")
    else:
        # Fall back to on-the-fly normalization
        df_normalized = df.copy()
        game_cols = [f"{game} Score" for game in selected_games]
        
        # Normalize
        for col in game_cols:
            vals = df_normalized[col].replace("n/a", 0).infer_objects(copy=False).astype(float)
            mean, std = vals.mean(), vals.std()
            df_normalized[f"norm_{col}"] = normalize_values(vals, mean, std)

    # Format game names
    formatted_games = []
    for game in selected_games:
        if game == 'Super Mario Bros':
            formatted_games.append('SMB')
        else:
            formatted_games.append(game)

    categories = formatted_games

    # Group players by prefix and sort alphabetically
    model_groups = {}
    for player in df_normalized["Player"]:
        prefix = get_model_prefix(player)
        model_groups.setdefault(prefix, []).append(player)
    
    # Sort each group alphabetically
    for prefix in model_groups:
        model_groups[prefix] = sorted(model_groups[prefix], key=str.lower)
    
    # Get sorted prefixes and create ordered player list
    sorted_prefixes = sorted(model_groups.keys(), key=str.lower)
    grouped_players = []
    for prefix in sorted_prefixes:
        grouped_players.extend(model_groups[prefix])

    fig = go.Figure()

    for player in grouped_players:
        row = df_normalized[df_normalized["Player"] == player]
        if row.empty:
            continue
        row = row.iloc[0]

        is_highlighted = highlight_models and player in highlight_models
        color = 'red' if is_highlighted else MODEL_COLORS.get(player, '#808080')
        fillcolor = 'rgba(255, 0, 0, 0.4)' if is_highlighted else hex_to_rgba(color, 0.2)

        # Get normalized values
        if cached_data:
            r = [row[f"norm_{game} Score"] for game in selected_games]
        else:
            r = [row[f"norm_{game} Score"] for game in selected_games]

        display_name = player.lower()

        fig.add_trace(go.Scatterpolar(
            r=r + [r[0]],
            theta=categories + [categories[0]],
            mode='lines+markers',
            fill='toself',
            name=display_name,
            line=dict(color=color, width=6 if is_highlighted else 2),
            marker=dict(color=color, size=10 if is_highlighted else 6),
            fillcolor=fillcolor,
            opacity=1.0 if is_highlighted else 0.7,
            hovertemplate='<b>%{fullData.name}</b><br>Game: %{theta}<br>Score: %{r:.1f}<extra></extra>'
        ))

    fig.update_layout(
        autosize=True,
        height=550,
        margin=dict(l=400, r=100, t=20, b=20),
        title=dict(
            text="AI Normalized Performance Across Games",
            x=0.5,
            xanchor='center',
            yanchor='top',
            y=0.95,
            font=dict(size=20),
            pad=dict(b=20)
        ),
        polar=dict(
            radialaxis=dict(
                visible=True, 
                range=[0, 100],
                tickangle=45,
                tickfont=dict(size=12),
                gridcolor='lightgray',
                gridwidth=1,
                angle=45
            ),
            angularaxis=dict(
                tickfont=dict(size=14, weight='bold'),
                tickangle=0
            )
        ),
        legend=dict(
            font=dict(size=12),
            title="Choose your model 💡 (click / double-click)",
            itemsizing='trace',
            x=-1.4,
            y=0.8,
            yanchor='top',
            xanchor='left',
            bgcolor='rgba(255,255,255,0.6)',
            bordercolor='gray',
            borderwidth=1,
            itemclick="toggleothers",
            itemdoubleclick="toggle"
        )
    )

    return fig