# app.py import os import logging import gradio as gr import torch from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline # Embeddings 与 VectorStore 用新的分包 from langchain_huggingface import HuggingFaceEmbeddings from langchain_chroma import Chroma # LLM 继续用 community 包里的 Pipeline from langchain_community.llms import HuggingFacePipeline from langchain.chains import RetrievalQA from langchain.prompts import PromptTemplate from build_index import main as build_index_if_needed # 确保 build_index.py 与 app.py 同目录 logging.basicConfig(level=logging.INFO) # ─── 配置 ───────────────────────────────────────────────────── VECTOR_STORE_DIR = "./vector_store" MODEL_NAME = "uer/gpt2-chinese-cluecorpussmall" EMBEDDING_MODEL_NAME = "sentence-transformers/paraphrase-multilingual-mpnet-base-v2" # 容器启动时自动构建向量库(如果 vector_store 目录为空) if not os.path.exists(VECTOR_STORE_DIR) or not os.listdir(VECTOR_STORE_DIR): logging.info("向量库不存在,启动自动构建……") build_index_if_needed() # ─── 1. 加载生成模型 ────────────────────────────────────────────── logging.info("🔧 加载生成模型…") tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, trust_remote_code=True) model = AutoModelForCausalLM.from_pretrained( MODEL_NAME, torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32, device_map="auto", ) gen_pipe = pipeline( task="text-generation", model=model, tokenizer=tokenizer, max_new_tokens=256, temperature=0.5, top_p=0.9, do_sample=True, trust_remote_code=True, ) llm = HuggingFacePipeline(pipeline=gen_pipe) logging.info("✅ 生成模型加载成功。") # ─── 2. 加载向量库 ───────────────────────────────────────────── logging.info("📚 加载向量库…") embeddings = HuggingFaceEmbeddings(model_name=EMBEDDING_MODEL_NAME) vectordb = Chroma(persist_directory=VECTOR_STORE_DIR, embedding_function=embeddings) retriever = vectordb.as_retriever(search_kwargs={"k": 3}) logging.info("✅ 向量库加载成功。") # ─── 3. 自定义 Prompt ───────────────────────────────────────── prompt_template = PromptTemplate.from_template( """你是一位专业的数学助教,请根据以下参考资料回答用户的问题。 如果资料中没有相关内容,请直接回答“我不知道”或“资料中未提及”,不要编造答案。 参考资料: {context} 用户问题: {question} 回答(只允许基于参考资料,不要编造): """ ) # ─── 4. 构建 RAG 问答链(map_reduce) ─────────────────────────── qa_chain = RetrievalQA.from_chain_type( llm=llm, chain_type="map_reduce", # map_reduce 自动分段、避免超长 retriever=retriever, return_source_documents=True, ) logging.info("✅ RAG 问答链(map_reduce)构建成功。") # ─── 5. 业务函数 ─────────────────────────────────────────────── def qa_fn(query: str): if not query or not query.strip(): return "❌ 请输入问题内容。" try: result = qa_chain({"query": query}) except Exception as e: logging.error(f"问答链运行出错:{e}") return "抱歉,问答过程中出现错误,请稍后重试。" answer = result.get("result", "").strip() sources = result.get("source_documents", []) if not answer: return "📌 回答:未生成答案,请稍后再试。" if not sources: return f"📌 回答:{answer}\n\n(未检索到参考片段)" # 拼接参考片段 sources_text = "\n\n".join( [f"【片段 {i+1}】\n{doc.page_content}" for i, doc in enumerate(sources)] ) return f"📌 回答:{answer}\n\n📚 参考:\n{sources_text}" # ─── 6. Gradio 界面 ───────────────────────────────────────────── with gr.Blocks(title="智能学习助手") as demo: gr.Markdown("## 📘 智能学习助手\n输入教材相关问题,例如:“什么是函数的定义域?”") with gr.Row(): query = gr.Textbox(label="问题", placeholder="请输入你的问题", lines=2) answer = gr.Textbox(label="回答", lines=12) gr.Button("提问").click(fn=qa_fn, inputs=query, outputs=answer) gr.Markdown( "---\n" "模型:UER/GPT2-Chinese-ClueCorpus + Sentence-Transformers RAG (map_reduce) \n" "由 Hugging Face Spaces 提供算力支持" ) if __name__ == "__main__": demo.launch()