ljy5946 commited on
Commit
bee6ae5
·
verified ·
1 Parent(s): c8da1ec

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +51 -17
app.py CHANGED
@@ -1,19 +1,25 @@
1
- import os, gradio as gr, torch, logging
2
- from langchain_chroma import Chroma
3
- from langchain_community.embeddings import HuggingFaceEmbeddings # ← 新路径
 
 
 
 
4
  from langchain_community.llms import HuggingFacePipeline
5
  from langchain.chains import RetrievalQA
 
6
  from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
7
 
8
  logging.basicConfig(level=logging.INFO)
9
 
 
10
  VECTOR_STORE_DIR = "./vector_store"
11
  MODEL_NAME = "uer/gpt2-chinese-cluecorpussmall"
12
  EMBEDDING_MODEL_NAME = "sentence-transformers/paraphrase-multilingual-mpnet-base-v2"
13
 
14
- # ─── 1. 加载 LLM ───
15
  print("🔧 加载生成模型…")
16
- tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
17
  model = AutoModelForCausalLM.from_pretrained(
18
  MODEL_NAME,
19
  torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
@@ -29,43 +35,71 @@ gen_pipe = pipeline(
29
  do_sample=True,
30
  )
31
  llm = HuggingFacePipeline(pipeline=gen_pipe)
 
32
 
33
- # ─── 2. 加载向量库 ───
34
  print("📚 加载向量库…")
35
  embeddings = HuggingFaceEmbeddings(model_name=EMBEDDING_MODEL_NAME)
36
  vectordb = Chroma(persist_directory=VECTOR_STORE_DIR, embedding_function=embeddings)
37
-
38
- # ─── 3. 构建 RAG 问答链 ───
39
  retriever = vectordb.as_retriever(search_kwargs={"k": 3})
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
40
  qa_chain = RetrievalQA.from_chain_type(
41
  llm=llm,
42
  chain_type="stuff",
43
  retriever=retriever,
 
44
  return_source_documents=True,
45
  )
 
46
 
47
- # ─── 4. 业务函数 ───
48
  def qa_fn(query: str):
49
  if not query.strip():
50
  return "❌ 请输入问题内容。"
 
51
  result = qa_chain({"query": query})
52
- answer = result["result"]
53
  sources = result.get("source_documents", [])
 
 
 
54
  sources_text = "\n\n".join(
55
  [f"【片段 {i+1}】\n{doc.page_content}" for i, doc in enumerate(sources)]
56
  )
57
- return f"📌 回答:{answer.strip()}\n\n📚 参考:\n{sources_text}"
58
 
59
- # ─── 5. Gradio UI ───
60
- with gr.Blocks(title="数学知识问答助手") as demo:
61
- gr.Markdown("## 📘 数学知识问答助手\n输入教材相关问题,例如:“什么是函数的定义域?”")
62
  with gr.Row():
63
  query = gr.Textbox(label="问题", placeholder="请输入你的问题", lines=2)
64
- answer = gr.Textbox(label="回答", lines=15)
65
- gr.Button("提问").click(qa_fn, inputs=query, outputs=answer)
66
- gr.Markdown("---\n模型:gpt2-chinese-cluecorpus + Chroma RAG\nPowered by Hugging Face Spaces")
 
 
 
 
67
 
68
  if __name__ == "__main__":
69
  demo.launch()
70
 
71
 
 
 
1
+ import os
2
+ import gradio as gr
3
+ import torch
4
+ import logging
5
+
6
+ from langchain_community.embeddings import HuggingFaceEmbeddings
7
+ from langchain_community.vectorstores import Chroma
8
  from langchain_community.llms import HuggingFacePipeline
9
  from langchain.chains import RetrievalQA
10
+ from langchain.prompts import PromptTemplate
11
  from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
12
 
13
  logging.basicConfig(level=logging.INFO)
14
 
15
+ # ─── 配置 ─────────────────────────────────────────────────────
16
  VECTOR_STORE_DIR = "./vector_store"
17
  MODEL_NAME = "uer/gpt2-chinese-cluecorpussmall"
18
  EMBEDDING_MODEL_NAME = "sentence-transformers/paraphrase-multilingual-mpnet-base-v2"
19
 
20
+ # ─── 1. 加载 LLM ────────────────────────────────────────────────
21
  print("🔧 加载生成模型…")
22
+ tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, trust_remote_code=True)
23
  model = AutoModelForCausalLM.from_pretrained(
24
  MODEL_NAME,
25
  torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
 
35
  do_sample=True,
36
  )
37
  llm = HuggingFacePipeline(pipeline=gen_pipe)
38
+ print("✅ 生成模型加载成功。")
39
 
40
+ # ─── 2. 加载向量库 ─────────────────────────────────────────────
41
  print("📚 加载向量库…")
42
  embeddings = HuggingFaceEmbeddings(model_name=EMBEDDING_MODEL_NAME)
43
  vectordb = Chroma(persist_directory=VECTOR_STORE_DIR, embedding_function=embeddings)
 
 
44
  retriever = vectordb.as_retriever(search_kwargs={"k": 3})
45
+ print("✅ 向量库加载成功。")
46
+
47
+ # ─── 3. 自定义 Prompt ─────────────────────────────────────────
48
+ prompt_template = PromptTemplate.from_template(
49
+ """你是一位专业的数学助教,请根据以下参考资料回答用户的问题。
50
+ 如果资料中没有相关内容,请直接回答“我不知道”或“资料中未提及”,不要编造答案。
51
+
52
+ 参考资料:
53
+ {context}
54
+
55
+ 用户问题:
56
+ {question}
57
+
58
+ 回答(只允许基于参考资料,不要编造):
59
+ """
60
+ )
61
+
62
+ # ─── 4. 构建 RAG 问答链 ───────────────────────────────────────
63
  qa_chain = RetrievalQA.from_chain_type(
64
  llm=llm,
65
  chain_type="stuff",
66
  retriever=retriever,
67
+ chain_type_kwargs={"prompt": prompt_template},
68
  return_source_documents=True,
69
  )
70
+ print("✅ RAG 问答链构建成功。")
71
 
72
+ # ─── 5. 业务函数 ───────────────────────────────────────────────
73
  def qa_fn(query: str):
74
  if not query.strip():
75
  return "❌ 请输入问题内容。"
76
+ # 执行检索与问答
77
  result = qa_chain({"query": query})
78
+ answer = result["result"].strip()
79
  sources = result.get("source_documents", [])
80
+ if not sources:
81
+ return "📌 回答:未在知识库中找到相关内容,请尝试更换问题或补充教材。"
82
+ # 拼接参考片段
83
  sources_text = "\n\n".join(
84
  [f"【片段 {i+1}】\n{doc.page_content}" for i, doc in enumerate(sources)]
85
  )
86
+ return f"📌 回答:{answer}\n\n📚 参考:\n{sources_text}"
87
 
88
+ # ─── 6. Gradio 界面 ─────────────────────────────────────────────
89
+ with gr.Blocks(title="智能学习助手") as demo:
90
+ gr.Markdown("## 📘 智能学习助手\n输入教材相关问题,例如:“什么是函数的定义域?”")
91
  with gr.Row():
92
  query = gr.Textbox(label="问题", placeholder="请输入你的问题", lines=2)
93
+ answer = gr.Textbox(label="回答", lines=12)
94
+ gr.Button("提问").click(fn=qa_fn, inputs=query, outputs=answer)
95
+ gr.Markdown(
96
+ "---\n"
97
+ "模型:UER/GPT2-Chinese-ClueCorpus + Sentence-Transformers RAG \n"
98
+ "由 Hugging Face Spaces 提供算力支持"
99
+ )
100
 
101
  if __name__ == "__main__":
102
  demo.launch()
103
 
104
 
105
+