Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,33 +1,28 @@
|
|
1 |
import os
|
2 |
import gradio as gr
|
3 |
-
import torch
|
4 |
import logging
|
5 |
|
6 |
-
# LangChain
|
|
|
7 |
from langchain_chroma import Chroma
|
8 |
-
from
|
9 |
-
|
10 |
-
# 如果遇到问题,也可以尝试从 langchain_community.llms 导入
|
11 |
-
from langchain_huggingface.llms import HuggingFacePipeline # 或者 from langchain_community.llms import HuggingFacePipeline
|
12 |
from langchain.chains import RetrievalQA
|
13 |
|
14 |
# Transformers 库
|
15 |
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
|
16 |
|
17 |
-
logging.basicConfig(level=logging.INFO)
|
18 |
|
19 |
# 设置路径
|
20 |
-
# 确保这些路径与您的预下载模型和向量库文件夹名称匹配
|
21 |
VECTOR_STORE_DIR = "./vector_store"
|
22 |
-
# 将模型名称指向本地预下载的路径
|
23 |
MODEL_NAME = "./hf_models_cache/models--uer--gpt2-chinese-cluecorpussmall"
|
24 |
EMBEDDING_MODEL_NAME = "./hf_models_cache/models--sentence-transformers--paraphrase-multilingual-mpnet-base-v2"
|
25 |
|
26 |
-
|
27 |
# 1. 轻量 LLM(uer/gpt2-chinese-cluecorpussmall)
|
28 |
print("🔧 加载生成模型...")
|
29 |
try:
|
30 |
-
# 确保 tokenizer 和 model 是从正确的本地路径加载
|
31 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
32 |
model = AutoModelForCausalLM.from_pretrained(
|
33 |
MODEL_NAME,
|
@@ -47,28 +42,25 @@ try:
|
|
47 |
print("✅ 生成模型加载成功。")
|
48 |
except Exception as e:
|
49 |
logging.error(f"加载生成模型失败: {e}", exc_info=True)
|
50 |
-
|
51 |
-
llm = None # 确保 llm 为 None,避免后续报错
|
52 |
print("❌ 生成模型加载失败,应用可能无法正常工作。")
|
53 |
|
54 |
-
|
55 |
# 2. 向量库和嵌入模型
|
56 |
print("📚 加载向量库和嵌入模型...")
|
57 |
try:
|
58 |
embeddings = HuggingFaceEmbeddings(
|
59 |
-
model_name=EMBEDDING_MODEL_NAME
|
60 |
)
|
61 |
vectordb = Chroma(persist_directory=VECTOR_STORE_DIR, embedding_function=embeddings)
|
62 |
print("✅ 向量库加载成功。")
|
63 |
except Exception as e:
|
64 |
logging.error(f"加载向量库失败: {e}", exc_info=True)
|
65 |
-
vectordb = None
|
66 |
print("❌ 向量库加载失败,RAG功能将无法使用。")
|
67 |
|
68 |
-
|
69 |
# 3. RAG 问答链
|
70 |
qa_chain = None
|
71 |
-
if llm and vectordb:
|
72 |
try:
|
73 |
retriever = vectordb.as_retriever(search_kwargs={"k": 3})
|
74 |
qa_chain = RetrievalQA.from_chain_type(
|
@@ -82,12 +74,11 @@ if llm and vectordb: # 只有当LLM和向量库都成功加载时才构建RAG链
|
|
82 |
logging.error(f"构建RAG问答链失败: {e}", exc_info=True)
|
83 |
print("❌ RAG问答链构建失败。")
|
84 |
|
85 |
-
|
86 |
# 4. 业务函数
|
87 |
def qa_fn(query):
|
88 |
if not query.strip():
|
89 |
return "❌ 请输入问题内容。"
|
90 |
-
if not qa_chain:
|
91 |
return "⚠️ 问答系统未完全加载,请稍后再试或检查日志。"
|
92 |
try:
|
93 |
result = qa_chain({"query": query})
|
@@ -113,7 +104,6 @@ with gr.Blocks(title="数学知识问答助手", theme=gr.themes.Base()) as demo
|
|
113 |
|
114 |
gr.Markdown("---\n模型:uer/gpt2-chinese-cluecorpussmall + Chroma RAG | Powered by Hugging Face Spaces")
|
115 |
|
116 |
-
|
117 |
if __name__ == "__main__":
|
118 |
demo.launch()
|
119 |
|
|
|
1 |
import os
|
2 |
import gradio as gr
|
3 |
+
import torch
|
4 |
import logging
|
5 |
|
6 |
+
# LangChain 0.1.x 系列的导入方式
|
7 |
+
# 注意:HuggingFacePipeline通常在langchain.llms中,或者直接在langchain_community中
|
8 |
from langchain_chroma import Chroma
|
9 |
+
from langchain.embeddings import HuggingFaceEmbeddings # <--- 注意这里,从 langchain.embeddings 导入
|
10 |
+
from langchain.llms import HuggingFacePipeline # <--- 注意这里,从 langchain.llms 导入
|
|
|
|
|
11 |
from langchain.chains import RetrievalQA
|
12 |
|
13 |
# Transformers 库
|
14 |
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
|
15 |
|
16 |
+
logging.basicConfig(level=logging.INFO)
|
17 |
|
18 |
# 设置路径
|
|
|
19 |
VECTOR_STORE_DIR = "./vector_store"
|
|
|
20 |
MODEL_NAME = "./hf_models_cache/models--uer--gpt2-chinese-cluecorpussmall"
|
21 |
EMBEDDING_MODEL_NAME = "./hf_models_cache/models--sentence-transformers--paraphrase-multilingual-mpnet-base-v2"
|
22 |
|
|
|
23 |
# 1. 轻量 LLM(uer/gpt2-chinese-cluecorpussmall)
|
24 |
print("🔧 加载生成模型...")
|
25 |
try:
|
|
|
26 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
27 |
model = AutoModelForCausalLM.from_pretrained(
|
28 |
MODEL_NAME,
|
|
|
42 |
print("✅ 生成模型加载成功。")
|
43 |
except Exception as e:
|
44 |
logging.error(f"加载生成模型失败: {e}", exc_info=True)
|
45 |
+
llm = None
|
|
|
46 |
print("❌ 生成模型加载失败,应用可能无法正常工作。")
|
47 |
|
|
|
48 |
# 2. 向量库和嵌入模型
|
49 |
print("📚 加载向量库和嵌入模型...")
|
50 |
try:
|
51 |
embeddings = HuggingFaceEmbeddings(
|
52 |
+
model_name=EMBEDDING_MODEL_NAME
|
53 |
)
|
54 |
vectordb = Chroma(persist_directory=VECTOR_STORE_DIR, embedding_function=embeddings)
|
55 |
print("✅ 向量库加载成功。")
|
56 |
except Exception as e:
|
57 |
logging.error(f"加载向量库失败: {e}", exc_info=True)
|
58 |
+
vectordb = None
|
59 |
print("❌ 向量库加载失败,RAG功能将无法使用。")
|
60 |
|
|
|
61 |
# 3. RAG 问答链
|
62 |
qa_chain = None
|
63 |
+
if llm and vectordb:
|
64 |
try:
|
65 |
retriever = vectordb.as_retriever(search_kwargs={"k": 3})
|
66 |
qa_chain = RetrievalQA.from_chain_type(
|
|
|
74 |
logging.error(f"构建RAG问答链失败: {e}", exc_info=True)
|
75 |
print("❌ RAG问答链构建失败。")
|
76 |
|
|
|
77 |
# 4. 业务函数
|
78 |
def qa_fn(query):
|
79 |
if not query.strip():
|
80 |
return "❌ 请输入问题内容。"
|
81 |
+
if not qa_chain:
|
82 |
return "⚠️ 问答系统未完全加载,请稍后再试或检查日志。"
|
83 |
try:
|
84 |
result = qa_chain({"query": query})
|
|
|
104 |
|
105 |
gr.Markdown("---\n模型:uer/gpt2-chinese-cluecorpussmall + Chroma RAG | Powered by Hugging Face Spaces")
|
106 |
|
|
|
107 |
if __name__ == "__main__":
|
108 |
demo.launch()
|
109 |
|