Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,30 +1,33 @@
|
|
|
|
|
|
1 |
import os
|
|
|
2 |
import gradio as gr
|
3 |
import torch
|
4 |
-
|
|
|
5 |
|
6 |
from langchain_community.embeddings import HuggingFaceEmbeddings
|
7 |
from langchain_community.vectorstores import Chroma
|
8 |
from langchain_community.llms import HuggingFacePipeline
|
9 |
from langchain.chains import RetrievalQA
|
10 |
from langchain.prompts import PromptTemplate
|
11 |
-
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
|
12 |
|
13 |
-
from build_index import main as build_index_if_needed #
|
14 |
|
15 |
logging.basicConfig(level=logging.INFO)
|
16 |
|
17 |
# ─── 配置 ─────────────────────────────────────────────────────
|
18 |
-
VECTOR_STORE_DIR
|
19 |
-
MODEL_NAME
|
20 |
-
EMBEDDING_MODEL_NAME
|
21 |
|
22 |
-
#
|
23 |
if not os.path.exists(VECTOR_STORE_DIR) or not os.listdir(VECTOR_STORE_DIR):
|
24 |
logging.info("向量库不存在,启动自动构建……")
|
25 |
build_index_if_needed()
|
26 |
|
27 |
-
# ─── 1.
|
28 |
logging.info("🔧 加载生成模型…")
|
29 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, trust_remote_code=True)
|
30 |
model = AutoModelForCausalLM.from_pretrained(
|
@@ -48,8 +51,8 @@ logging.info("✅ 生成模型加载成功。")
|
|
48 |
# ─── 2. 加载向量库 ─────────────────────────────────────────────
|
49 |
logging.info("📚 加载向量库…")
|
50 |
embeddings = HuggingFaceEmbeddings(model_name=EMBEDDING_MODEL_NAME)
|
51 |
-
vectordb
|
52 |
-
retriever
|
53 |
logging.info("✅ 向量库加载成功。")
|
54 |
|
55 |
# ─── 3. 自定义 Prompt ─────────────────────────────────────────
|
@@ -66,25 +69,34 @@ prompt_template = PromptTemplate.from_template(
|
|
66 |
"""
|
67 |
)
|
68 |
|
69 |
-
# ─── 4. 构建 RAG
|
70 |
qa_chain = RetrievalQA.from_chain_type(
|
71 |
llm=llm,
|
72 |
-
chain_type="
|
73 |
retriever=retriever,
|
74 |
chain_type_kwargs={"prompt": prompt_template},
|
75 |
return_source_documents=True,
|
76 |
)
|
77 |
-
logging.info("✅ RAG
|
78 |
|
79 |
# ─── 5. 业务函数 ───────────────────────────────────────────────
|
80 |
def qa_fn(query: str):
|
81 |
-
if not query.strip():
|
82 |
return "❌ 请输入问题内容。"
|
83 |
-
|
84 |
-
|
|
|
|
|
|
|
|
|
|
|
85 |
sources = result.get("source_documents", [])
|
|
|
|
|
86 |
if not sources:
|
87 |
-
return "📌
|
|
|
|
|
88 |
sources_text = "\n\n".join(
|
89 |
[f"【片段 {i+1}】\n{doc.page_content}" for i, doc in enumerate(sources)]
|
90 |
)
|
@@ -99,7 +111,7 @@ with gr.Blocks(title="智能学习助手") as demo:
|
|
99 |
gr.Button("提问").click(fn=qa_fn, inputs=query, outputs=answer)
|
100 |
gr.Markdown(
|
101 |
"---\n"
|
102 |
-
"模型:UER/GPT2-Chinese-ClueCorpus + Sentence-Transformers RAG \n"
|
103 |
"由 Hugging Face Spaces 提供算力支持"
|
104 |
)
|
105 |
|
@@ -109,3 +121,4 @@ if __name__ == "__main__":
|
|
109 |
|
110 |
|
111 |
|
|
|
|
1 |
+
# app.py
|
2 |
+
|
3 |
import os
|
4 |
+
import logging
|
5 |
import gradio as gr
|
6 |
import torch
|
7 |
+
|
8 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
|
9 |
|
10 |
from langchain_community.embeddings import HuggingFaceEmbeddings
|
11 |
from langchain_community.vectorstores import Chroma
|
12 |
from langchain_community.llms import HuggingFacePipeline
|
13 |
from langchain.chains import RetrievalQA
|
14 |
from langchain.prompts import PromptTemplate
|
|
|
15 |
|
16 |
+
from build_index import main as build_index_if_needed # 需确保 build_index.py 在同目录
|
17 |
|
18 |
logging.basicConfig(level=logging.INFO)
|
19 |
|
20 |
# ─── 配置 ─────────────────────────────────────────────────────
|
21 |
+
VECTOR_STORE_DIR = "./vector_store"
|
22 |
+
MODEL_NAME = "uer/gpt2-chinese-cluecorpussmall"
|
23 |
+
EMBEDDING_MODEL_NAME = "sentence-transformers/paraphrase-multilingual-mpnet-base-v2"
|
24 |
|
25 |
+
# 容器启动时自动构建向量库(如果还没提交 vector_store)
|
26 |
if not os.path.exists(VECTOR_STORE_DIR) or not os.listdir(VECTOR_STORE_DIR):
|
27 |
logging.info("向量库不存在,启动自动构建……")
|
28 |
build_index_if_needed()
|
29 |
|
30 |
+
# ─── 1. 加载生成模型 ──────────────────────────────────────────────
|
31 |
logging.info("🔧 加载生成模型…")
|
32 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, trust_remote_code=True)
|
33 |
model = AutoModelForCausalLM.from_pretrained(
|
|
|
51 |
# ─── 2. 加载向量库 ─────────────────────────────────────────────
|
52 |
logging.info("📚 加载向量库…")
|
53 |
embeddings = HuggingFaceEmbeddings(model_name=EMBEDDING_MODEL_NAME)
|
54 |
+
vectordb = Chroma(persist_directory=VECTOR_STORE_DIR, embedding_function=embeddings)
|
55 |
+
retriever = vectordb.as_retriever(search_kwargs={"k": 3})
|
56 |
logging.info("✅ 向量库加载成功。")
|
57 |
|
58 |
# ─── 3. 自定义 Prompt ─────────────────────────────────────────
|
|
|
69 |
"""
|
70 |
)
|
71 |
|
72 |
+
# ─── 4. 构建 RAG 问答链(map_reduce) ───────────────────────────
|
73 |
qa_chain = RetrievalQA.from_chain_type(
|
74 |
llm=llm,
|
75 |
+
chain_type="map_reduce", # map_reduce 避免超长
|
76 |
retriever=retriever,
|
77 |
chain_type_kwargs={"prompt": prompt_template},
|
78 |
return_source_documents=True,
|
79 |
)
|
80 |
+
logging.info("✅ RAG 问答链(map_reduce)构建成功。")
|
81 |
|
82 |
# ─── 5. 业务函数 ───────────────────────────────────────────────
|
83 |
def qa_fn(query: str):
|
84 |
+
if not query or not query.strip():
|
85 |
return "❌ 请输入问题内容。"
|
86 |
+
try:
|
87 |
+
result = qa_chain({"query": query})
|
88 |
+
except Exception as e:
|
89 |
+
logging.error(f"问答链运行出错:{e}")
|
90 |
+
return "抱歉,问答过程中出现错误,请稍后重试。"
|
91 |
+
|
92 |
+
answer = result.get("result", "").strip()
|
93 |
sources = result.get("source_documents", [])
|
94 |
+
if not answer:
|
95 |
+
return "📌 回答:未生成答案,请稍后再试。"
|
96 |
if not sources:
|
97 |
+
return f"📌 回答:{answer}\n\n(未检索到参考片段)"
|
98 |
+
|
99 |
+
# 拼接参考片段
|
100 |
sources_text = "\n\n".join(
|
101 |
[f"【片段 {i+1}】\n{doc.page_content}" for i, doc in enumerate(sources)]
|
102 |
)
|
|
|
111 |
gr.Button("提问").click(fn=qa_fn, inputs=query, outputs=answer)
|
112 |
gr.Markdown(
|
113 |
"---\n"
|
114 |
+
"模型:UER/GPT2-Chinese-ClueCorpus + Sentence-Transformers RAG (map_reduce) \n"
|
115 |
"由 Hugging Face Spaces 提供算力支持"
|
116 |
)
|
117 |
|
|
|
121 |
|
122 |
|
123 |
|
124 |
+
|