Spaces:
Sleeping
Sleeping
Delete vector_build/build_vector_store.py
Browse files
vector_build/build_vector_store.py
DELETED
@@ -1,47 +0,0 @@
|
|
1 |
-
import os
|
2 |
-
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
3 |
-
from langchain_community.embeddings import HuggingFaceEmbeddings
|
4 |
-
from langchain_community.vectorstores import Chroma
|
5 |
-
|
6 |
-
# 1. 设置路径
|
7 |
-
BASE_DIR = os.path.dirname(os.path.abspath(__file__)) # 当前脚本所在路径
|
8 |
-
PERSIST_DIR = os.path.abspath(os.path.join(BASE_DIR, "../vector_store")) # 向量库存储路径
|
9 |
-
SOURCE_DIR = BASE_DIR # 你的 .md 文件就在当前 vector_build/ 目录下
|
10 |
-
|
11 |
-
# 2. 加载 Embedding 模型
|
12 |
-
embed_model = HuggingFaceEmbeddings(
|
13 |
-
model_name="sentence-transformers/paraphrase-multilingual-mpnet-base-v2"
|
14 |
-
)
|
15 |
-
|
16 |
-
# 3. 加载 Markdown 文件 & 切分为小段
|
17 |
-
text_splitter = RecursiveCharacterTextSplitter(
|
18 |
-
chunk_size=500, chunk_overlap=50
|
19 |
-
)
|
20 |
-
|
21 |
-
docs = []
|
22 |
-
for fname in os.listdir(SOURCE_DIR):
|
23 |
-
if fname.endswith(".md"):
|
24 |
-
with open(os.path.join(SOURCE_DIR, fname), "r", encoding="utf-8") as f:
|
25 |
-
raw_text = f.read()
|
26 |
-
chunks = text_splitter.split_text(raw_text)
|
27 |
-
for chunk in chunks:
|
28 |
-
docs.append({
|
29 |
-
"text": chunk,
|
30 |
-
"source": fname
|
31 |
-
})
|
32 |
-
|
33 |
-
print(f"🐣 共切分出 {len(docs)} 个文本块,准备向量化...")
|
34 |
-
|
35 |
-
# 4. 创建 Chroma 向量库
|
36 |
-
texts = [d["text"] for d in docs]
|
37 |
-
metas = [{"source": d["source"]} for d in docs]
|
38 |
-
|
39 |
-
vectordb = Chroma.from_texts(
|
40 |
-
texts=texts,
|
41 |
-
embedding=embed_model,
|
42 |
-
metadatas=metas,
|
43 |
-
persist_directory=PERSIST_DIR
|
44 |
-
)
|
45 |
-
vectordb.persist()
|
46 |
-
|
47 |
-
print(f"🎉 向量库生成完毕,已保存在:{PERSIST_DIR}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|