Spaces:
Sleeping
Sleeping
Upload 2 files
Browse files- app.py +131 -0
- requirements.txt +9 -0
app.py
ADDED
@@ -0,0 +1,131 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import logging
|
2 |
+
import gradio as gr
|
3 |
+
import torch
|
4 |
+
from langchain_chroma import Chroma
|
5 |
+
from langchain_huggingface import HuggingFaceEmbeddings
|
6 |
+
from langchain_community.llms import HuggingFacePipeline
|
7 |
+
from langchain.chains import RetrievalQA
|
8 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
|
9 |
+
|
10 |
+
logging.basicConfig(level=logging.INFO)
|
11 |
+
|
12 |
+
# 1. Load vector store
|
13 |
+
embedding_model = HuggingFaceEmbeddings(
|
14 |
+
model_name="sentence-transformers/paraphrase-multilingual-mpnet-base-v2"
|
15 |
+
)
|
16 |
+
vector_store = Chroma(
|
17 |
+
persist_directory="vector_store",
|
18 |
+
embedding_function=embedding_model,
|
19 |
+
)
|
20 |
+
|
21 |
+
# 2. Load lightweight LLM (Phi-2)
|
22 |
+
model_id = "microsoft/phi-2"
|
23 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True)
|
24 |
+
model = AutoModelForCausalLM.from_pretrained(
|
25 |
+
model_id,
|
26 |
+
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
|
27 |
+
device_map="auto",
|
28 |
+
)
|
29 |
+
gen_pipe = pipeline(
|
30 |
+
task="text-generation",
|
31 |
+
model=model,
|
32 |
+
tokenizer=tokenizer,
|
33 |
+
max_new_tokens=256,
|
34 |
+
temperature=0.5,
|
35 |
+
top_p=0.9,
|
36 |
+
do_sample=True,
|
37 |
+
)
|
38 |
+
llm = HuggingFacePipeline(pipeline=gen_pipe)
|
39 |
+
|
40 |
+
# 3. Build RAG QA chain
|
41 |
+
retriever = vector_store.as_retriever(search_kwargs={"k": 3})
|
42 |
+
qa_chain = RetrievalQA.from_chain_type(
|
43 |
+
llm=llm,
|
44 |
+
chain_type="stuff",
|
45 |
+
retriever=retriever,
|
46 |
+
)
|
47 |
+
|
48 |
+
# 4. Business functions
|
49 |
+
def simple_qa(user_query: str) -> str:
|
50 |
+
if not user_query.strip():
|
51 |
+
return "⚠️ 请输入学习问题,例如:什么是定积分?"
|
52 |
+
try:
|
53 |
+
return qa_chain.run(user_query)
|
54 |
+
except Exception as e:
|
55 |
+
logging.exception("问答失败:%s", e)
|
56 |
+
return f"⚠️ 问答失败,请稍后再试。\n[调试信息] {e}"
|
57 |
+
|
58 |
+
def generate_outline(topic: str):
|
59 |
+
if not topic.strip():
|
60 |
+
yield "⚠️ 请输入章节或主题,例如:高等数学 第六章 定积分", ""
|
61 |
+
return
|
62 |
+
|
63 |
+
yield "⌛ 正在检索/生成,请稍候…", ""
|
64 |
+
|
65 |
+
try:
|
66 |
+
docs = retriever.get_relevant_documents(topic)
|
67 |
+
if not docs:
|
68 |
+
yield "⚠️ 没有找到相关内容,请换个关键词试试。", ""
|
69 |
+
return
|
70 |
+
|
71 |
+
snippet = "\n".join(d.page_content for d in docs)
|
72 |
+
prompt = (
|
73 |
+
f"根据以下内容,为“{topic}”生成大学本科层次的结构化学习大纲,格式示例:\n"
|
74 |
+
f"一、章节标题\n 1. 节标题\n (1)要点描述\n...\n\n"
|
75 |
+
f"文档内容:\n{snippet}\n\n学习大纲:"
|
76 |
+
)
|
77 |
+
raw = gen_pipe(prompt, max_new_tokens=512)[0]["generated_text"]
|
78 |
+
outline = raw.split("学习大纲:")[-1].strip()
|
79 |
+
yield outline, snippet
|
80 |
+
except Exception as e:
|
81 |
+
logging.exception("大纲生成失败:%s", e)
|
82 |
+
yield "⚠️ 抱歉,生成失败,请稍后再试。", ""
|
83 |
+
|
84 |
+
def placeholder_fn(*args, **kwargs):
|
85 |
+
return "功能尚未实现,请等待后续更新。"
|
86 |
+
|
87 |
+
# 5. Gradio UI
|
88 |
+
with gr.Blocks(title="智能学习助手", theme=gr.themes.Base()) as demo:
|
89 |
+
gr.Markdown("# 📚 智能学习助手 v2.0\n— 专业课向量问答与大纲生成 —")
|
90 |
+
|
91 |
+
with gr.Tabs():
|
92 |
+
# Chat tab
|
93 |
+
with gr.TabItem("💬 智能问答"):
|
94 |
+
chatbot = gr.Chatbot(show_label=False, height=400)
|
95 |
+
user_msg = gr.Textbox(placeholder="输入学习问题", show_label=False)
|
96 |
+
send_btn = gr.Button("发送", variant="primary")
|
97 |
+
|
98 |
+
def chat_flow(message, history):
|
99 |
+
history.append((message, "🤔 正在思考中,请稍后…"))
|
100 |
+
yield "", history
|
101 |
+
ans = simple_qa(message)
|
102 |
+
history[-1] = (message, ans)
|
103 |
+
yield "", history
|
104 |
+
|
105 |
+
send_btn.click(chat_flow, [user_msg, chatbot], [user_msg, chatbot])
|
106 |
+
user_msg.submit(chat_flow, [user_msg, chatbot], [user_msg, chatbot])
|
107 |
+
|
108 |
+
# Outline tab
|
109 |
+
with gr.TabItem("📝 生成学习大纲"):
|
110 |
+
topic_in = gr.Textbox(label="章节主题", placeholder="例如:定积分")
|
111 |
+
outline_out = gr.Textbox(label="系统生成的大纲", lines=12)
|
112 |
+
snippet_out = gr.Textbox(label="[调试] 检索片段", lines=6, visible=False)
|
113 |
+
gen_btn = gr.Button("生成大纲", variant="primary")
|
114 |
+
gen_btn.click(generate_outline, inputs=topic_in, outputs=[outline_out, snippet_out])
|
115 |
+
|
116 |
+
# Placeholder tabs
|
117 |
+
with gr.TabItem("❓ 自动出题"):
|
118 |
+
gr.Textbox(label="知识点").render()
|
119 |
+
gr.Dropdown(["简单", "中等", "困难"], label="难度").render()
|
120 |
+
gr.Slider(1, 10, step=1, label="题目数量").render()
|
121 |
+
gr.Button("开始出题").click(placeholder_fn, [], [])
|
122 |
+
|
123 |
+
with gr.TabItem("✅ 答案批改"):
|
124 |
+
gr.Textbox(label="标准答案", lines=4).render()
|
125 |
+
gr.Textbox(label="学生答案", lines=4).render()
|
126 |
+
gr.Button("开始批改").click(placeholder_fn, [], [])
|
127 |
+
|
128 |
+
gr.Markdown("---\n模型:Phi-2 + 向量库检索 | Powered by Hugging Face Spaces")
|
129 |
+
|
130 |
+
if __name__ == "__main__":
|
131 |
+
demo.launch()
|
requirements.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
langchain>=0.2.9
|
2 |
+
langchain-huggingface>=0.0.6
|
3 |
+
langchain-chroma>=0.0.6
|
4 |
+
chromadb>=0.4.24
|
5 |
+
transformers>=4.40.0
|
6 |
+
accelerate
|
7 |
+
torch>=2.1.0
|
8 |
+
gradio>=4.24.0
|
9 |
+
sentence-transformers
|