Spaces:
Sleeping
Sleeping
import os | |
import gradio as gr | |
import torch | |
import logging | |
# LangChain 0.1.x 系列的导入方式 | |
from langchain_chroma import Chroma | |
from langchain.embeddings import HuggingFaceEmbeddings | |
from langchain_community.llms import HuggingFacePipeline | |
from langchain.chains import RetrievalQA | |
# Transformers 库 | |
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline | |
logging.basicConfig(level=logging.INFO) | |
# 设置路径 | |
# 直接使用 Hugging Face Hub 上的模型 ID,而不是本地缓存路径 | |
VECTOR_STORE_DIR = "./vector_store" # 这个目录用于 ChromaDB,我们保留 | |
MODEL_NAME = "uer/gpt2-chinese-cluecorpussmall" # <--- 修改这里! | |
EMBEDDING_MODEL_NAME = "sentence-transformers/paraphrase-multilingual-mpnet-base-v2" # <--- 修改这里! | |
# 1. 轻量 LLM(uer/gpt2-chinese-cluecorpussmall) | |
print("🔧 加载生成模型...") | |
try: | |
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME) | |
model = AutoModelForCausalLM.from_pretrained( | |
MODEL_NAME, | |
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32, | |
device_map="auto", | |
) | |
gen_pipe = pipeline( | |
task="text-generation", | |
model=model, | |
tokenizer=tokenizer, | |
max_new_tokens=256, | |
temperature=0.5, | |
top_p=0.9, | |
do_sample=True, | |
) | |
llm = HuggingFacePipeline(pipeline=gen_pipe) | |
print("✅ 生成模型加载成功。") | |
except Exception as e: | |
logging.error(f"加载生成模型失败: {e}", exc_info=True) | |
llm = None | |
print("❌ 生成模型加载失败,应用可能无法正常工作。") | |
# 2. 向量库和嵌入模型 | |
print("📚 加载向量库和嵌入模型...") | |
try: | |
embeddings = HuggingFaceEmbeddings( | |
model_name=EMBEDDING_MODEL_NAME | |
) | |
vectordb = Chroma(persist_directory=VECTOR_STORE_DIR, embedding_function=embeddings) | |
print("✅ 向量库加载成功。") | |
except Exception as e: | |
logging.error(f"加载向量库失败: {e}", exc_info=True) | |
vectordb = None | |
print("❌ 向量库加载失败,RAG功能将无法使用。") | |
# 3. RAG 问答链 | |
qa_chain = None | |
if llm and vectordb: | |
try: | |
retriever = vectordb.as_retriever(search_kwargs={"k": 3}) | |
qa_chain = RetrievalQA.from_chain_type( | |
llm=llm, | |
chain_type="stuff", | |
retriever=retriever, | |
return_source_documents=True | |
) | |
print("✅ RAG问答链构建成功。") | |
except Exception as e: | |
logging.error(f"构建RAG问答链失败: {e}", exc_info=True) | |
print("❌ RAG问答链构建失败。") | |
# 4. 业务函数 | |
def qa_fn(query): | |
if not query.strip(): | |
return "❌ 请输入问题内容。" | |
if not qa_chain: | |
return "⚠️ 问答系统未完全加载,请稍后再试或检查日志。" | |
try: | |
result = qa_chain({"query": query}) | |
answer = result["result"] | |
sources = result.get("source_documents", []) | |
sources_text = "\n\n".join( | |
[f"【片段 {i+1}】\n" + doc.page_content for i, doc in enumerate(sources)] | |
) | |
return f"📌 回答:{answer.strip()}\n\n📚 参考:\n{sources_text}" | |
except Exception as e: | |
logging.exception("问答失败:%s", e) | |
return f"❌ 出现错误:{str(e)}\n请检查日志获取更多信息。" | |
# 5. Gradio UI | |
with gr.Blocks(title="数学知识问答助手", theme=gr.themes.Base()) as demo: | |
gr.Markdown("## 📘 数学知识问答助手\n输入教材相关问题,例如:“什么是函数的定义域?”") | |
with gr.Row(): | |
query_input = gr.Textbox(label="问题", placeholder="请输入你的问题", lines=2) | |
output_box = gr.Textbox(label="回答", lines=15) | |
submit_btn = gr.Button("提问") | |
submit_btn.click(fn=qa_fn, inputs=query_input, outputs=output_box) | |
gr.Markdown("---\n模型:uer/gpt2-chinese-cluecorpussmall + Chroma RAG | Powered by Hugging Face Spaces") | |
if __name__ == "__main__": | |
demo.launch() | |