ljy5946's picture
Update app.py
14517da verified
raw
history blame
5.08 kB
# app.py
import gradio as gr
import logging
from langchain_community.vectorstores import Chroma
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain.chains import RetrievalQA
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
from langchain.llms import HuggingFacePipeline
logging.basicConfig(level=logging.INFO)
# === 加载向量库 ===
embedding_model = HuggingFaceEmbeddings(
model_name="sentence-transformers/paraphrase-multilingual-mpnet-base-v2"
)
vector_store = Chroma(
persist_directory="vector_store",
embedding_function=embedding_model,
)
# === 加载 LLM 模型(openchat) ===
model_id = "openchat/openchat-3.5-0106"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(
model_id,
device_map="auto",
torch_dtype="auto",
)
gen_pipe = pipeline(
"text-generation",
model=model,
tokenizer=tokenizer,
max_new_tokens=512,
temperature=0.7,
top_p=0.9,
)
llm = HuggingFacePipeline(pipeline=gen_pipe)
# === 构建问答链 ===
qa_chain = RetrievalQA.from_chain_type(
llm=llm,
chain_type="stuff",
retriever=vector_store.as_retriever(search_kwargs={"k": 3}),
)
# === 智能问答函数 ===
def simple_qa(user_query):
if not user_query.strip():
return "⚠️ 请输入学习问题,例如:什么是定积分?"
try:
answer = qa_chain.run(user_query)
return answer
except Exception as e:
logging.error(f"问答失败: {e}")
return "抱歉,暂时无法回答,请稍后再试。"
# === 大纲生成函数 ===
def generate_outline(topic: str):
if not topic.strip():
return "⚠️ 请输入章节或主题,例如:高等数学 第六章 定积分"
try:
docs = vector_store.as_retriever(search_kwargs={"k": 3}).get_relevant_documents(topic)
snippet = "\n".join([doc.page_content for doc in docs])
prompt = (
f"根据以下内容,为“{topic}”生成大学本科层次的结构化学习大纲,格式如下:\n"
f"一、章节标题\n 1. 节标题\n (1)要点描述\n...\n\n"
f"文档内容:\n{snippet}\n\n学习大纲:"
)
result = llm.generate(prompt).generations[0][0].text.strip()
return result
except Exception as e:
logging.error(f"大纲生成失败: {e}")
return "⚠️ 抱歉,生成失败,请稍后再试。"
# === 占位函数 ===
def placeholder_fn(*args, **kwargs):
return "功能尚未实现,请等待后续更新。"
# === Gradio UI ===
with gr.Blocks() as demo:
gr.Markdown("# 智能学习助手 v2.0\n— 大学生专业课学习助手 —")
with gr.Tabs():
# --- 模块 A:智能问答 ---
with gr.TabItem("智能问答"):
gr.Markdown("> 示例:什么是函数的定义域?")
chatbot = gr.Chatbot()
user_msg = gr.Textbox(placeholder="输入您的学习问题,然后按回车或点击发送")
send_btn = gr.Button("发送")
def update_chat(message, chat_history):
reply = simple_qa(message)
chat_history.append((message, reply))
return "", chat_history
send_btn.click(update_chat, inputs=[user_msg, chatbot], outputs=[user_msg, chatbot])
user_msg.submit(update_chat, inputs=[user_msg, chatbot], outputs=[user_msg, chatbot])
# --- 模块 B:生成学习大纲 ---
with gr.TabItem("生成学习大纲"):
gr.Markdown("> 示例:高等数学 第六章 定积分")
topic_input = gr.Textbox(label="章节主题", placeholder="请输入章节名")
outline_output = gr.Textbox(label="系统生成的大纲", lines=12)
gen_outline_btn = gr.Button("生成大纲")
gen_outline_btn.click(fn=generate_outline, inputs=topic_input, outputs=outline_output)
# --- 模块 C:自动出题(占位) ---
with gr.TabItem("自动出题"):
gr.Markdown("(出题模块,待开发)")
topic2 = gr.Textbox(label="知识点/主题", placeholder="如:高数 第三章 多元函数")
difficulty2 = gr.Dropdown(choices=["简单", "中等", "困难"], label="难度")
count2 = gr.Slider(1, 10, step=1, label="题目数量")
gen_q_btn = gr.Button("开始出题")
gen_q_btn.click(placeholder_fn, inputs=[topic2, difficulty2, count2], outputs=topic2)
# --- 模块 D:答案批改(占位) ---
with gr.TabItem("答案批改"):
gr.Markdown("(批改模块,待开发)")
std_ans = gr.Textbox(label="标准答案", lines=5)
user_ans = gr.Textbox(label="您的作答", lines=5)
grade_btn = gr.Button("开始批改")
grade_btn.click(placeholder_fn, inputs=[user_ans, std_ans], outputs=user_ans)
gr.Markdown("---\n由 HuggingFace 提供支持 • 版本 2.0")
if __name__ == "__main__":
demo.launch()