Spaces:
Sleeping
Sleeping
# app.py | |
import gradio as gr | |
import logging | |
from langchain_community.vectorstores import Chroma | |
from langchain_community.embeddings import HuggingFaceEmbeddings | |
from langchain.chains import RetrievalQA | |
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline | |
from langchain.llms import HuggingFacePipeline | |
logging.basicConfig(level=logging.INFO) | |
# === 加载向量库 === | |
embedding_model = HuggingFaceEmbeddings( | |
model_name="sentence-transformers/paraphrase-multilingual-mpnet-base-v2" | |
) | |
vector_store = Chroma( | |
persist_directory="vector_store", | |
embedding_function=embedding_model, | |
) | |
# === 加载 LLM 模型(openchat) === | |
model_id = "openchat/openchat-3.5-0106" | |
tokenizer = AutoTokenizer.from_pretrained(model_id) | |
model = AutoModelForCausalLM.from_pretrained( | |
model_id, | |
device_map="auto", | |
torch_dtype="auto", | |
) | |
gen_pipe = pipeline( | |
"text-generation", | |
model=model, | |
tokenizer=tokenizer, | |
max_new_tokens=512, | |
temperature=0.7, | |
top_p=0.9, | |
) | |
llm = HuggingFacePipeline(pipeline=gen_pipe) | |
# === 构建问答链 === | |
qa_chain = RetrievalQA.from_chain_type( | |
llm=llm, | |
chain_type="stuff", | |
retriever=vector_store.as_retriever(search_kwargs={"k": 3}), | |
) | |
# === 智能问答函数 === | |
def simple_qa(user_query): | |
if not user_query.strip(): | |
return "⚠️ 请输入学习问题,例如:什么是定积分?" | |
try: | |
answer = qa_chain.run(user_query) | |
return answer | |
except Exception as e: | |
logging.error(f"问答失败: {e}") | |
return "抱歉,暂时无法回答,请稍后再试。" | |
# === 大纲生成函数 === | |
def generate_outline(topic: str): | |
if not topic.strip(): | |
return "⚠️ 请输入章节或主题,例如:高等数学 第六章 定积分" | |
try: | |
docs = vector_store.as_retriever(search_kwargs={"k": 3}).get_relevant_documents(topic) | |
snippet = "\n".join([doc.page_content for doc in docs]) | |
prompt = ( | |
f"根据以下内容,为“{topic}”生成大学本科层次的结构化学习大纲,格式如下:\n" | |
f"一、章节标题\n 1. 节标题\n (1)要点描述\n...\n\n" | |
f"文档内容:\n{snippet}\n\n学习大纲:" | |
) | |
result = llm.generate(prompt).generations[0][0].text.strip() | |
return result | |
except Exception as e: | |
logging.error(f"大纲生成失败: {e}") | |
return "⚠️ 抱歉,生成失败,请稍后再试。" | |
# === 占位函数 === | |
def placeholder_fn(*args, **kwargs): | |
return "功能尚未实现,请等待后续更新。" | |
# === Gradio UI === | |
with gr.Blocks() as demo: | |
gr.Markdown("# 智能学习助手 v2.0\n— 大学生专业课学习助手 —") | |
with gr.Tabs(): | |
# --- 模块 A:智能问答 --- | |
with gr.TabItem("智能问答"): | |
gr.Markdown("> 示例:什么是函数的定义域?") | |
chatbot = gr.Chatbot() | |
user_msg = gr.Textbox(placeholder="输入您的学习问题,然后按回车或点击发送") | |
send_btn = gr.Button("发送") | |
def update_chat(message, chat_history): | |
reply = simple_qa(message) | |
chat_history.append((message, reply)) | |
return "", chat_history | |
send_btn.click(update_chat, inputs=[user_msg, chatbot], outputs=[user_msg, chatbot]) | |
user_msg.submit(update_chat, inputs=[user_msg, chatbot], outputs=[user_msg, chatbot]) | |
# --- 模块 B:生成学习大纲 --- | |
with gr.TabItem("生成学习大纲"): | |
gr.Markdown("> 示例:高等数学 第六章 定积分") | |
topic_input = gr.Textbox(label="章节主题", placeholder="请输入章节名") | |
outline_output = gr.Textbox(label="系统生成的大纲", lines=12) | |
gen_outline_btn = gr.Button("生成大纲") | |
gen_outline_btn.click(fn=generate_outline, inputs=topic_input, outputs=outline_output) | |
# --- 模块 C:自动出题(占位) --- | |
with gr.TabItem("自动出题"): | |
gr.Markdown("(出题模块,待开发)") | |
topic2 = gr.Textbox(label="知识点/主题", placeholder="如:高数 第三章 多元函数") | |
difficulty2 = gr.Dropdown(choices=["简单", "中等", "困难"], label="难度") | |
count2 = gr.Slider(1, 10, step=1, label="题目数量") | |
gen_q_btn = gr.Button("开始出题") | |
gen_q_btn.click(placeholder_fn, inputs=[topic2, difficulty2, count2], outputs=topic2) | |
# --- 模块 D:答案批改(占位) --- | |
with gr.TabItem("答案批改"): | |
gr.Markdown("(批改模块,待开发)") | |
std_ans = gr.Textbox(label="标准答案", lines=5) | |
user_ans = gr.Textbox(label="您的作答", lines=5) | |
grade_btn = gr.Button("开始批改") | |
grade_btn.click(placeholder_fn, inputs=[user_ans, std_ans], outputs=user_ans) | |
gr.Markdown("---\n由 HuggingFace 提供支持 • 版本 2.0") | |
if __name__ == "__main__": | |
demo.launch() | |