Smart_Learning_Assistant / build_vector_store.py
ljy5946's picture
Upload 5 files
a581ee8 verified
raw
history blame
1.58 kB
import os
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain_community.vectorstores import Chroma
# 1. 设置路径
BASE_DIR = os.path.dirname(os.path.abspath(__file__)) # 当前脚本所在路径
PERSIST_DIR = os.path.abspath(os.path.join(BASE_DIR, "../vector_store")) # 向量库存储路径
SOURCE_DIR = BASE_DIR # 你的 .md 文件就在当前 vector_build/ 目录下
# 2. 加载 Embedding 模型
embed_model = HuggingFaceEmbeddings(
model_name="sentence-transformers/paraphrase-multilingual-mpnet-base-v2"
)
# 3. 加载 Markdown 文件 & 切分为小段
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=500, chunk_overlap=50
)
docs = []
for fname in os.listdir(SOURCE_DIR):
if fname.endswith(".md"):
with open(os.path.join(SOURCE_DIR, fname), "r", encoding="utf-8") as f:
raw_text = f.read()
chunks = text_splitter.split_text(raw_text)
for chunk in chunks:
docs.append({
"text": chunk,
"source": fname
})
print(f"🐣 共切分出 {len(docs)} 个文本块,准备向量化...")
# 4. 创建 Chroma 向量库
texts = [d["text"] for d in docs]
metas = [{"source": d["source"]} for d in docs]
vectordb = Chroma.from_texts(
texts=texts,
embedding=embed_model,
metadatas=metas,
persist_directory=PERSIST_DIR
)
vectordb.persist()
print(f"🎉 向量库生成完毕,已保存在:{PERSIST_DIR}")