File size: 6,170 Bytes
cd123bf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2a591a9
 
cd123bf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
from collections import Counter
from typing import Dict, Tuple, List

import pandas as pd
import torch

from datasets import load_dataset, load_from_disk
from sklearn.model_selection import train_test_split

import src.data_utils.dataset_params as dataset_params

from src.data_utils.config import DatasetConfig, TextProcessorConfig
from src.data_utils.text_processor import TextProcessor


class DatasetGenerator:
    """
    Main dataset generator class
    
    Provides methods to load, build vocabulary, convert text datasets 
    into tensor format suitable for deep learning models.
    
    Args:
        dataset_name: Name of dataset from DatasetName enum
        config: Configuration object with preprocessing parameters
        device: Torch device to place tensors on (cpu/cuda)
    """

    def __init__(
        self, 
        dataset_name: dataset_params.DatasetName,
        config: DatasetConfig = DatasetConfig(),
        device: torch.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    ):
        self.dataset_params = dataset_params.get_dataset_params_by_name(dataset_name=dataset_name)
        self.config = config
        self.device = device
        self.text_processor = TextProcessor(
            vocab=None, 
            config=TextProcessorConfig(
                max_seq_len=self.config.max_seq_len,
                lowercase=self.config.lowercase,
                remove_punct=self.config.remove_punct,
                pad_token=self.config.pad_token,
                unk_token=self.config.unk_token,
            )
        )
        self.vocab = None
        self.id2word = None
        self.embedding_layer = None


    def load_raw_data(self) -> Tuple[pd.DataFrame, pd.DataFrame, pd.DataFrame]:
        """
        Load raw dataset from source
        
        Returns:
            Tuple of (train_df, val_df, test_df) DataFrames
        """
        if self.config.load_from_disk:
            dataset = load_from_disk(f"{self.config.path_to_data}/{self.dataset_params.local_path}")
        else:
            dataset = load_dataset(self.dataset_params.hugging_face_name)
        train_df = pd.DataFrame(dataset["train"])
        test_df = pd.DataFrame(dataset["test"])
        val_df, test_df = train_test_split(
            test_df, 
            test_size=0.5, 
            random_state=self.config.random_state, 
            stratify=test_df[self.dataset_params.label_col_name]
        )
                    
        # Sample configured sizes
        train_df = train_df.sample(n=self.config.train_size, random_state=self.config.random_state)
        val_df = val_df.sample(n=self.config.val_size, random_state=self.config.random_state)
        test_df = test_df.sample(n=self.config.test_size, random_state=self.config.random_state)
        
        return train_df, val_df, test_df


    def build_vocabulary(self, tokenized_texts: List[List[str]]) -> Tuple[Dict[str, int], Dict[int, str]]:
        """
        Build vocabulary from tokenized texts
        
        Args:
            tokenized_texts: List of tokenized texts
            
        Returns:
            Tuple of (word_to_id, id_to_word) mappings
        """

        all_tokens = [token for tokens in tokenized_texts for token in tokens]
        word_counts = Counter(all_tokens)
        
        filtered_words = [word for word, count in word_counts.items() 
                         if count >= self.config.min_word_freq]
        
        word_to_id = {self.config.pad_token: 0, self.config.unk_token: 1}
        id_to_word = {0: self.config.pad_token, 1: self.config.unk_token}
        
        for idx, word in enumerate(filtered_words, start=2):
            word_to_id[word] = idx
            id_to_word[idx] = word
        
        self.text_processor.vocab = word_to_id

        return word_to_id, id_to_word


    def generate_dataset(self) -> Tuple[
        Tuple[torch.Tensor, torch.Tensor],
        Tuple[torch.Tensor, torch.Tensor],
        Tuple[torch.Tensor, torch.Tensor]
    ]:
        """
        Main method to generate the full dataset
        
        Returns:
            Tuple containing:
            - (train_features, train_labels)
            - (val_features, val_labels)
            - (test_features, test_labels)
            - embedding_layer
        """
        
        train_df, val_df, test_df = self.load_raw_data()

        train_texts = train_df[self.dataset_params.content_col_name].tolist()
        train_tokens = [self.text_processor.preprocess_text(text) for text in train_texts]
        
        if self.config.build_vocab:
            self.vocab, self.id2word = self.build_vocabulary(train_tokens)

        X_train = torch.stack([self.text_processor.text_to_tensor(text) for text in train_texts])
        
        val_texts = val_df[self.dataset_params.content_col_name].tolist()
        X_val = torch.stack([self.text_processor.text_to_tensor(text) for text in val_texts])
        
        test_texts = test_df[self.dataset_params.content_col_name].tolist()
        X_test = torch.stack([self.text_processor.text_to_tensor(text) for text in test_texts])
        
        y_train = torch.tensor(train_df[self.dataset_params.label_col_name].values, dtype=torch.long)
        y_val = torch.tensor(val_df[self.dataset_params.label_col_name].values, dtype=torch.long)
        y_test = torch.tensor(test_df[self.dataset_params.label_col_name].values, dtype=torch.long)
        
        return (X_train, y_train), (X_val, y_val), (X_test, y_test)


    def get_vocabulary(self) -> Tuple[Dict[str, int], Dict[int, str]]:
        """
        Get vocabulary mappings
        
        Returns:
            Tuple of (word_to_id, id_to_word) dictionaries
        """

        return self.vocab, self.id2word


    def get_config(self) -> DatasetConfig:
        """
        Get current configuration
        
        Returns:
            DatasetConfig object
        """

        return self.config


    def get_text_processor(self) -> TextProcessor:
        """
        Get the text processor for inference usage
        
        Returns:
            TextProcessor object
        """
        return self.text_processor