File size: 17,450 Bytes
cd123bf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
{
 "cells": [
  {
   "cell_type": "markdown",
   "id": "9bfb61e1",
   "metadata": {},
   "source": [
    "# Сравниваем модели и сохраняем в `src/models/pretrained`"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "f0574ac3",
   "metadata": {},
   "source": [
    "- Импорты\n",
    "- Константы\n",
    "- Считывание датасетов"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "id": "5a237c5c",
   "metadata": {},
   "outputs": [],
   "source": [
    "import os\n",
    "import time\n",
    "import torch\n",
    "import warnings\n",
    "import numpy as np\n",
    "import pandas as pd\n",
    "import torch.nn as nn\n",
    "import torch.optim as optim\n",
    "from torch.utils.data import DataLoader, TensorDataset\n",
    "from sklearn.metrics import accuracy_score, precision_recall_fscore_support\n",
    "for warn in [UserWarning, FutureWarning]: warnings.filterwarnings(\"ignore\", category = warn)\n",
    "\n",
    "from src.data_utils.config import DatasetConfig\n",
    "from src.data_utils.dataset_params import DatasetName\n",
    "from src.data_utils.dataset_generator import DatasetGenerator\n",
    "from src.models.models import TransformerClassifier, CustomMambaClassifier, LSTMClassifier\n",
    "\n",
    "MAX_SEQ_LEN = 300\n",
    "EMBEDDING_DIM = 128\n",
    "BATCH_SIZE = 32\n",
    "LEARNING_RATE = 1e-4\n",
    "NUM_EPOCHS = 5  # для быстрого сравнения моделей\n",
    "NUM_CLASSES = 2\n",
    "\n",
    "SAVE_DIR = \"../pretrained_comparison\"\n",
    "os.makedirs(SAVE_DIR, exist_ok=True)\n",
    "DEVICE = torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\")\n",
    "\n",
    "config = DatasetConfig(\n",
    "    load_from_disk=True,\n",
    "    path_to_data=\"../datasets\"\n",
    ")\n",
    "\n",
    "generator = DatasetGenerator(DatasetName.IMDB, config=config)\n",
    "(X_train, y_train), (X_val, y_val), (X_test, y_test) = generator.generate_dataset()\n",
    "VOCAB_SIZE = len(generator.vocab)"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "5b95192d",
   "metadata": {},
   "source": [
    "Вспомогательные функции для трейна/валидации/теста"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "id": "b2a4534c",
   "metadata": {},
   "outputs": [],
   "source": [
    "\n",
    "def train_and_evaluate(model, train_loader, val_loader, optimizer, criterion, num_epochs, device, model_name, save_path):\n",
    "    best_val_f1 = 0.0\n",
    "    history = {'train_loss': [], 'val_loss': [], 'val_accuracy': [], 'val_f1': []}\n",
    "    \n",
    "    print(f\"--- Начало обучения модели: {model_name} на устройстве {device} ---\")\n",
    "\n",
    "    for epoch in range(num_epochs):\n",
    "        model.train()\n",
    "        start_time = time.time()\n",
    "        total_train_loss = 0\n",
    "\n",
    "        for batch_X, batch_y in train_loader:\n",
    "            batch_X, batch_y = batch_X.to(device), batch_y.to(device)\n",
    "            optimizer.zero_grad()\n",
    "            outputs = model(batch_X)\n",
    "            loss = criterion(outputs, batch_y)\n",
    "            loss.backward()\n",
    "            optimizer.step()\n",
    "            total_train_loss += loss.item()\n",
    "        \n",
    "        avg_train_loss = total_train_loss / len(train_loader)\n",
    "        history['train_loss'].append(avg_train_loss)\n",
    "\n",
    "        model.eval()\n",
    "        total_val_loss = 0\n",
    "        all_preds = []\n",
    "        all_labels = []\n",
    "\n",
    "        with torch.no_grad():\n",
    "            for batch_X, batch_y in val_loader:\n",
    "                batch_X, batch_y = batch_X.to(device), batch_y.to(device)\n",
    "                outputs = model(batch_X)\n",
    "                loss = criterion(outputs, batch_y)\n",
    "                total_val_loss += loss.item()\n",
    "                \n",
    "                _, predicted = torch.max(outputs.data, 1)\n",
    "                all_preds.extend(predicted.cpu().numpy())\n",
    "                all_labels.extend(batch_y.cpu().numpy())\n",
    "        \n",
    "        avg_val_loss = total_val_loss / len(val_loader)\n",
    "        \n",
    "        accuracy = accuracy_score(all_labels, all_preds)\n",
    "        precision, recall, f1, _ = precision_recall_fscore_support(all_labels, all_preds, average='binary')\n",
    "        \n",
    "        history['val_loss'].append(avg_val_loss)\n",
    "        history['val_accuracy'].append(accuracy)\n",
    "        history['val_f1'].append(f1)\n",
    "\n",
    "        epoch_time = time.time() - start_time\n",
    "        print(f\"Эпоха {epoch+1}/{num_epochs} | Время: {epoch_time:.2f}с | Train Loss: {avg_train_loss:.4f} | \"\n",
    "              f\"Val Loss: {avg_val_loss:.4f} | Val Acc: {accuracy:.4f} | Val F1: {f1:.4f}\")\n",
    "\n",
    "        if f1 > best_val_f1:\n",
    "            best_val_f1 = f1\n",
    "            torch.save(model.state_dict(), save_path)\n",
    "            print(f\"  -> Модель сохранена, новый лучший Val F1: {best_val_f1:.4f}\")\n",
    "            \n",
    "    print(f\"--- Обучение модели {model_name} завершено ---\")\n",
    "    return history\n",
    "\n",
    "def evaluate_on_test(model, test_loader, device, criterion):\n",
    "    model.eval()\n",
    "    total_test_loss = 0\n",
    "    all_preds = []\n",
    "    all_labels = []\n",
    "\n",
    "    with torch.no_grad():\n",
    "        for batch_X, batch_y in test_loader:\n",
    "            batch_X, batch_y = batch_X.to(device), batch_y.to(device)\n",
    "            outputs = model(batch_X)\n",
    "            loss = criterion(outputs, batch_y)\n",
    "            total_test_loss += loss.item()\n",
    "            \n",
    "            _, predicted = torch.max(outputs.data, 1)\n",
    "            all_preds.extend(predicted.cpu().numpy())\n",
    "            all_labels.extend(batch_y.cpu().numpy())\n",
    "            \n",
    "    avg_test_loss = total_test_loss / len(test_loader)\n",
    "        \n",
    "    accuracy = accuracy_score(all_labels, all_preds)\n",
    "    precision, recall, f1, _ = precision_recall_fscore_support(all_labels, all_preds, average='binary')\n",
    "    \n",
    "    return {'loss': avg_test_loss, 'accuracy': accuracy, 'precision': precision, 'recall': recall, 'f1_score': f1}"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "1be50523",
   "metadata": {},
   "source": [
    "Создание даталоадера"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "id": "cccc5bea",
   "metadata": {},
   "outputs": [],
   "source": [
    "def create_dataloader(X, y, batch_size, shuffle=True):\n",
    "    X_tensor = torch.as_tensor(X, dtype=torch.long)\n",
    "    y_tensor = torch.as_tensor(y, dtype=torch.long)\n",
    "    dataset = TensorDataset(X_tensor, y_tensor)\n",
    "    return DataLoader(dataset, batch_size=batch_size, shuffle=shuffle)\n",
    "\n",
    "train_loader = create_dataloader(X_train, y_train, BATCH_SIZE)\n",
    "val_loader = create_dataloader(X_val, y_val, BATCH_SIZE, shuffle=False)\n",
    "test_loader = create_dataloader(X_test, y_test, BATCH_SIZE, shuffle=False)"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "4938b9f3",
   "metadata": {},
   "source": [
    "Сравнения моделей\n",
    "\n",
    "Смотрим первые 5 эпох чтобы выбрать лучшую модель, с которой будем играться дальше"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "id": "0244aafa",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "--- Начало обучения модели: CustomMamba на устройстве cuda ---\n",
      "Эпоха 1/5 | Время: 337.85с | Train Loss: 0.6768 | Val Loss: 0.6168 | Val Acc: 0.6592 | Val F1: 0.5937\n",
      "  -> Модель сохранена, новый лучший Val F1: 0.5937\n",
      "Эпоха 2/5 | Время: 345.54с | Train Loss: 0.5266 | Val Loss: 0.4964 | Val Acc: 0.7580 | Val F1: 0.7552\n",
      "  -> Модель сохранена, новый лучший Val F1: 0.7552\n",
      "Эпоха 3/5 | Время: 343.23с | Train Loss: 0.4329 | Val Loss: 0.4586 | Val Acc: 0.7812 | Val F1: 0.7830\n",
      "  -> Модель сохранена, новый лучший Val F1: 0.7830\n",
      "Эпоха 4/5 | Время: 342.62с | Train Loss: 0.3730 | Val Loss: 0.4596 | Val Acc: 0.7928 | Val F1: 0.8056\n",
      "  -> Модель сохранена, новый лучший Val F1: 0.8056\n",
      "Эпоха 5/5 | Время: 340.21с | Train Loss: 0.3127 | Val Loss: 0.4469 | Val Acc: 0.7996 | Val F1: 0.8124\n",
      "  -> Модель сохранена, новый лучший Val F1: 0.8124\n",
      "--- Обучение модели CustomMamba завершено ---\n",
      "--- Оценка лучшей модели CustomMamba на тестовых данных ---\n",
      "Результаты для CustomMamba: {'loss': 0.44949763529239944, 'accuracy': 0.8062, 'precision': 0.778874269005848, 'recall': 0.8541082164328657, 'f1_score': 0.8147581724335691}\n",
      "------------------------------------------------------------\n",
      "--- Начало обучения модели: Lib_LSTM на устройстве cuda ---\n",
      "Эпоха 1/5 | Время: 5.09с | Train Loss: 0.6930 | Val Loss: 0.6922 | Val Acc: 0.5170 | Val F1: 0.4221\n",
      "  -> Модель сохранена, новый лучший Val F1: 0.4221\n",
      "Эпоха 2/5 | Время: 5.03с | Train Loss: 0.6911 | Val Loss: 0.6899 | Val Acc: 0.5324 | Val F1: 0.4880\n",
      "  -> Модель сохранена, новый лучший Val F1: 0.4880\n",
      "Эпоха 3/5 | Время: 5.03с | Train Loss: 0.6864 | Val Loss: 0.6837 | Val Acc: 0.5530 | Val F1: 0.5605\n",
      "  -> Модель сохранена, новый лучший Val F1: 0.5605\n",
      "Эпоха 4/5 | Время: 5.03с | Train Loss: 0.6740 | Val Loss: 0.6589 | Val Acc: 0.6096 | Val F1: 0.6208\n",
      "  -> Модель сохранена, новый лучший Val F1: 0.6208\n",
      "Эпоха 5/5 | Время: 5.04с | Train Loss: 0.6489 | Val Loss: 0.6501 | Val Acc: 0.6498 | Val F1: 0.6460\n",
      "  -> Модель сохранена, новый лучший Val F1: 0.6460\n",
      "--- Обучение модели Lib_LSTM завершено ---\n",
      "--- Оценка лучшей модели Lib_LSTM на тестовых данных ---\n",
      "Результаты для Lib_LSTM: {'loss': 0.6330309821541902, 'accuracy': 0.6644, 'precision': 0.6724356268467708, 'recall': 0.6384769539078157, 'f1_score': 0.655016447368421}\n",
      "------------------------------------------------------------\n",
      "--- Начало обучения модели: Lib_Transformer на устройстве cuda ---\n",
      "Эпоха 1/5 | Время: 4.28с | Train Loss: 0.6712 | Val Loss: 0.6773 | Val Acc: 0.5292 | Val F1: 0.1729\n",
      "  -> Модель сохранена, новый лучший Val F1: 0.1729\n",
      "Эпоха 2/5 | Время: 4.14с | Train Loss: 0.5753 | Val Loss: 0.5631 | Val Acc: 0.7308 | Val F1: 0.7701\n",
      "  -> Модель сохранена, новый лучший Val F1: 0.7701\n",
      "Эпоха 3/5 | Время: 4.17с | Train Loss: 0.4836 | Val Loss: 0.5106 | Val Acc: 0.7622 | Val F1: 0.7830\n",
      "  -> Модель сохранена, новый лучший Val F1: 0.7830\n",
      "Эпоха 4/5 | Время: 4.16с | Train Loss: 0.4399 | Val Loss: 0.4880 | Val Acc: 0.7814 | Val F1: 0.7763\n",
      "Эпоха 5/5 | Время: 4.13с | Train Loss: 0.4014 | Val Loss: 0.4611 | Val Acc: 0.7946 | Val F1: 0.8078\n",
      "  -> Модель сохранена, новый лучший Val F1: 0.8078\n",
      "--- Обучение модели Lib_Transformer завершено ---\n",
      "--- Оценка лучшей модели Lib_Transformer на тестовых данных ---\n",
      "Результаты для Lib_Transformer: {'loss': 0.4671077333438169, 'accuracy': 0.7938, 'precision': 0.7661818181818182, 'recall': 0.8444889779559118, 'f1_score': 0.8034318398474738}\n",
      "------------------------------------------------------------\n",
      "\n",
      "\n",
      "--- Итоговая таблица сравнения моделей на тестовых данных ---\n",
      "                     loss  accuracy  precision    recall  f1_score\n",
      "CustomMamba      0.449498    0.8062   0.778874  0.854108  0.814758\n",
      "Lib_LSTM         0.633031    0.6644   0.672436  0.638477  0.655016\n",
      "Lib_Transformer  0.467108    0.7938   0.766182  0.844489  0.803432\n"
     ]
    }
   ],
   "source": [
    "model_configs = {\n",
    "    \"CustomMamba\": {\n",
    "        \"class\": CustomMambaClassifier,\n",
    "        \"params\": {'vocab_size': VOCAB_SIZE, 'd_model': EMBEDDING_DIM, 'd_state': 8, \n",
    "                   'd_conv': 4, 'num_layers': 2, 'num_classes': NUM_CLASSES},\n",
    "    },\n",
    "\n",
    "    \"Lib_LSTM\": {\n",
    "        \"class\": LSTMClassifier,\n",
    "        \"params\": {'vocab_size': VOCAB_SIZE, 'embed_dim': EMBEDDING_DIM, 'hidden_dim': 128, \n",
    "                   'num_layers': 2, 'num_classes': NUM_CLASSES, 'dropout': 0.5},\n",
    "    },\n",
    "    \"Lib_Transformer\": {\n",
    "        \"class\": TransformerClassifier,\n",
    "        \"params\": {'vocab_size': VOCAB_SIZE, 'embed_dim': EMBEDDING_DIM, 'num_heads': 4, \n",
    "                   'num_layers': 2, 'num_classes': NUM_CLASSES, 'max_seq_len': MAX_SEQ_LEN},\n",
    "    },\n",
    "}\n",
    "\n",
    "results = {}\n",
    "for model_name, config in model_configs.items():\n",
    "\n",
    "    model_path = os.path.join(SAVE_DIR, f\"best_model_{model_name.lower()}.pth\")\n",
    "    \n",
    "    model = config['class'](**config['params']).to(DEVICE)\n",
    "    optimizer = optim.Adam(model.parameters(), lr=LEARNING_RATE)\n",
    "    criterion = nn.CrossEntropyLoss()\n",
    "    \n",
    "    train_and_evaluate(\n",
    "        model=model, train_loader=train_loader, val_loader=val_loader,\n",
    "        optimizer=optimizer, criterion=criterion, num_epochs=NUM_EPOCHS,\n",
    "        device=DEVICE, model_name=model_name, save_path=model_path\n",
    "    )\n",
    "    \n",
    "    print(f\"--- Оценка лучшей модели {model_name} на тестовых данных ---\")\n",
    "    if os.path.exists(model_path):\n",
    "        best_model = config['class'](**config['params']).to(DEVICE)\n",
    "        best_model.load_state_dict(torch.load(model_path))\n",
    "        test_metrics = evaluate_on_test(best_model, test_loader, DEVICE, criterion)\n",
    "        results[model_name] = test_metrics\n",
    "        print(f\"Результаты для {model_name}: {test_metrics}\")\n",
    "    else:\n",
    "        print(f\"Файл лучшей модели для {model_name} не найден. Пропускаем оценку.\")\n",
    "\n",
    "    print(\"-\" * 60)\n",
    "    \n",
    "if results:\n",
    "    results_df = pd.DataFrame(results).T\n",
    "    print(\"\\n\\n--- Итоговая таблица сравнения моделей на тестовых данных ---\")\n",
    "    print(results_df.to_string())\n",
    "else:\n",
    "    print(\"Не удалось получить результаты ни для одной модели.\")\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "404db766",
   "metadata": {},
   "source": [
    "По результатам видно, что LSTM и Transformer обучаются быстро, но Mamba обучается хорошо. Дальнейшие шаги следующие \n",
    " - Пробуем сравнить Transformer и Mamba более детально, играем с гиперпараметрами\n",
    " - LSTM проигрывает Transformer и по времени, и по качеству, поэтому в следующий этап сравнения не пойдет\n",
    " \n",
    "Цель следующего иследования: найти идеальный баланс между временем и качеством. Поставим больше эпох, меньший lr для обоих моделей, увеличим датасет (в текущем сетапе было 10'000 сэмплов на трейн и по 5'000 на валидацию/тест)"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "monkey-coding-dl-project-rj23F0vJ-py3.12",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.12.5"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}