Spaces:
Running
Running
import os | |
from typing import Annotated, List | |
from fastapi import Request, HTTPException, Form | |
import modal | |
import torch | |
import torch.nn.functional as F | |
from torch import Tensor | |
from transformers import AutoTokenizer, AutoModel | |
image = ( | |
modal.Image.debian_slim(python_version="3.11") | |
.pip_install( | |
"transformers", | |
"huggingface_hub[hf_transfer]==0.26.2", | |
"flashinfer-python==0.2.0.post2", # pinning, very unstable | |
"fastapi[standard]", | |
extra_index_url="https://flashinfer.ai/whl/cu124/torch2.5", | |
) | |
.env({"HF_HUB_ENABLE_HF_TRANSFER": "1"}) # faster model transfers | |
) | |
MODELS_DIR = "/llamas" | |
MODEL_NAME = "intfloat/multilingual-e5-large-instruct" | |
MODEL_REVISION = "84344a23ee1820ac951bc365f1e91d094a911763" | |
hf_cache_vol = modal.Volume.from_name("huggingface-cache", create_if_missing=True) | |
vllm_cache_vol = modal.Volume.from_name("vllm-cache", create_if_missing=True) | |
app = modal.App("intfloat-multilingual-e5-large-instruct-embeddings") | |
def get_device(): | |
return torch.device('cuda' if torch.cuda.is_available() else 'cpu') | |
def load_model(): | |
print("Loading model...") | |
device = get_device() | |
print(f"Using device: {device}") | |
tokenizer = AutoTokenizer.from_pretrained('intfloat/multilingual-e5-large-instruct') | |
model = AutoModel.from_pretrained('intfloat/multilingual-e5-large-instruct').to(device) | |
print("Model loaded successfully.") | |
return tokenizer, model, device | |
N_GPU = 1 | |
MINUTES = 60 # seconds | |
VLLM_PORT = 8000 | |
def average_pool(last_hidden_states: Tensor, | |
attention_mask: Tensor) -> Tensor: | |
last_hidden = last_hidden_states.masked_fill(~attention_mask[..., None].bool(), 0.0) | |
return last_hidden.sum(dim=1) / attention_mask.sum(dim=1)[..., None] | |
# how many requests can one replica handle? tune carefully! | |
def embed(request: Request, text: Annotated[str, Form()]): | |
api_key = request.headers.get("x-api-key") | |
expected_key = os.environ["API_KEY"] | |
if api_key != expected_key: | |
raise HTTPException(status_code=401, detail="Unauthorized") | |
texts = [t for t in text.split("\n") if t.strip()] | |
if not texts: | |
return [] | |
tokenizer, model, device = load_model() | |
model.eval() | |
print(f"Start embedding {len(texts)} texts") | |
try: | |
with torch.no_grad(): | |
# Move inputs to the same device as model | |
batch_dict = tokenizer(texts, padding=True, truncation=True, return_tensors='pt') | |
batch_dict = {k: v.to(device) for k, v in batch_dict.items()} | |
# Forward pass | |
outputs = model(**batch_dict) | |
# Process embeddings | |
embeddings = average_pool( | |
outputs.last_hidden_state, | |
batch_dict['attention_mask'] | |
) | |
embeddings = F.normalize(embeddings, p=2, dim=1) | |
# Move to CPU and convert to list for serialization | |
embeddings = embeddings.cpu().numpy().tolist() | |
print("Finished embedding texts.") | |
return embeddings | |
except RuntimeError as e: | |
print(f"Error during embedding: {str(e)}") | |
if "CUDA out of memory" in str(e): | |
print("CUDA out of memory error. Try reducing batch size or using a smaller model.") | |
raise | |